Last Week:

- Sampling Lecture
 - Key terms
 - Sources of error
 - Probability Samples
 - Simple Random, Systematic, Stratified, Multistage cluster
 - Importance of sample size

Non-Probability samples

- Convenience sample
- Snowball sample
- Theoretical sample
- Quota sample

Today:

- Finish sampling lecture
- Move onto Quantitative Data Analysis
 - 3 Types of variables
 - 3 Fundamental conditions for establishing causality
 - 3 types of causes
 - Univariate distributions and statistics
 - Bivariate and Multivariate relationships
- Assignment 2 (SPSS).. Due next week..
- Extension: Friday, 5:00 p.m. (my office:LH208)
- I am primarily interested in your SPSS output!!

Non-PS: Convenience Sample

- Cases are included because they are readily available
 - Ex. The sample of students outside the library..

Non-PS: Snowball Sample

- A form of convenience sampling:
 - Researcher makes contact with one or a few people, who then introduce the researcher to more people, who then introduce the researcher to more people
 - An excellent strategy for 'hidden' pops that have strong networks..
 - Ex. Ethnic or Religious Communities

Non-PS: Quota Sample

• Also a convenience sample of sorts

Qualitative Sampling

- Heavy use of the Non-P sampling discussed already
- Also, theoretical sampling

• Next chapter: Quantitative Analysis!!

- Start with "types of variables"
- And then move on to discuss, the concept of "Causality in greater detail"..

Types of Variables

• Nominal: There are

Types of Variables

• Ordinal:

Types of Variables

• Interval/ratio:

• Cause and effect

1) Temporal order

the cause of an event must occur before the event being explained

1) Temporal Order

2) association between variables

Education (X)	Percent in favour of Capital punishment (Y)	
less than high school	40	
high school grad	28	
some college/college grad	26	
some university	22	
university grad	11	

- As education (X) increases, % in favour of capital punishment (Y) decreases they move together
- Appears to be an association between these two variables

Education (X)	Percent in favour of Capital punishment (Y)	
less than high school	40	
high school grad	41	
some college/college grad	39	
some university	39	
university grad	40	

- As education increases, % in favour of capital punishment remains roughly the same across categories
- No association here

2) association between variables

2) association between variables

3) Eliminate (rule out) Spurious Relationships

3) Eliminate (rule out) Spurious Relationships

3) Eliminate (rule out) Spurious Relationships

• Not all causes were created equal

• 3 basic types of causes:

1. Necessary cause:

2. Sufficient cause:

3. Contributory cause:

Inferential statistics

1. Univariate

2. Bivariate

3. Multivariate (many variables)

• Frequency Distributions:

- Simple count across categories of a single variable
 - Mutually exclusive and exhaustive
- Possible with variables at all levels of measurement (nominal, ordinal, interval/ratio)

Grades	Frequency	
A+	312	
А	419	
В	2789	
С	3505	
D	782	
F	114	
Total	7921	

• % frequency

Easier to understand the size differences between categories

Grades	Frequency	% Frequency	
A+	312	3.94	
А	419	5.29	
В	2789	35.21	
С	3505	44.25	
D	782	9.87	
F	114	1.44	
Total	7921	100	

• % Frequency becomes more useful when making comparisons across more than one group or sample

Grades	Frequency	% Frequency	Cumulative %
A+	312	3.94	3.94
А	419	5.29	9.23
В	2789	35.21	44.44
С	3505	44.25	88.69
D	782	9.87	98.56
F	114	1.44	100.00
Total	7921	100	100
Grades	Frequency	% Frequency	Cumulative %
A+	568	3.33	3.33
А	954	5.59	8.91
В	5432	31.81	40.73
С	7887	46.19	86.92
D	2000	11.71	98.63
F	234	1.37	100.00
Total	17075	100	100

- Also, cumulative frequency distributions
 - % of cases in each category added to the % in proceeding categories
 - More useful for rank ordered variables

Grades	Frequency	% Frequency	Cumulative %
A+	312	3.94	3.94
А	419	5.29	9.23
В	2789	35.21	44.44
С	3505	44.25	88.69
D	782	9.87	98.56
F	114	1.44	100.00
Total	7921	100	100

- Can express frequencies in graphs as well
 - Many, many types available
 - Type used depends on
 - The level of measurement of the variable you want to display
 - Personal preference

Bar Charts/histograms

- graph of a frequency distribution
- suitable for nominal and ordinal variables, and interval/ratio variables with a small number of categories

Line Graph/Frequency Polygon

• Suitable for ordinal variables with many categories, and interval/ratio data

Unemployment rate by education level in NL, ages 25-44

- High school graduate
- Some postsecondary
- Postsecondary certificate or diploma
- University degree

• N.B. Lies, damn lies, and statistics! Always be cautious when interpreting graphs !

- Same data, different scale!
- Try to be honest about this in your own work, as well as watching out for it in others' work

• Another example ...

• Compared to ..

- Univariate summary indicators are also available
 - Summarize the variable with a single number

– Two types:

- measures of central tendency
 - The 'average' or midrange case
 - Mode, Median, Mean

measures of variability/dispersion

- how widely dispersed the cases are
- IQV, range, standard deviation

Measures of Central Tendency

- Mode: most common response
 - Here it is the 'Romantic era'
 - For nominal level variables or ordinal level with a very small # of categories

What is your favorite era of classical music?			
	Frequency	% Frequer	псу
Gregorian	28	7.89	
Renaissanc	47	13.24	
Baroque	49	13.80	
Classical	67	18.87	
Romantic	89	25.07	>
Modern	75	21.13	
Total	355	100.00	

Measures of Central Tendency

- Median: the middle score
 - half of all respondents fall above the score
 - half fall below
 - In this case, the median is 65
 - Good for any ranked variable
 - Best if # of categories is large

Resul	ts from a T	est
	91	
	86	
	86	
	83	
	82	
	79	
	78	
	76	
	72	
	69	
	68	
	67	
	67	
\leq	65	>
	65 61	>
	65 61 60	>
	65 61 60 58	
	65 61 60 58 58	
	65 61 60 58 58 58 57	
	65 61 60 58 58 58 57 56	
	65 61 60 58 58 58 57 56 56 56	
	65 61 60 58 58 58 57 56 56 56 55	
	65 61 60 58 58 58 57 56 56 56 56 55 55 52	
	65 61 60 58 58 58 57 56 56 56 55 55 52 50	
	65 61 60 58 58 57 56 56 56 55 55 52 50 50 50	
	65 61 60 58 58 58 57 56 56 56 55 55 52 50 50 48	

Measures of Central Tendency

- *Mean:* arithmetic average
 - sum of the case scores divided by the total number of cases

Rank	Results from a Test
1	91
2	26
2	96
3	00
4	03
	70
	73
	78
8	/6
9	72
10	69
11	68
12	67
13	67
14	65
15	61
16	60
17	58
18	58
19	57
20	56
21	56
22	55
23	52
24	50
25	50
26	48
27	42
Mean	65.63

Measures of central tendency

- Mean and median often quite close
 - 65 and 65.63
 - Except when there are *case outliers*
- Ex. say a couple of students had a really hard time and the bottom scores were 5 and 15 instead of 42 and 48
 - Median is still 65
 - But now mean is now 63.04

	Rank	Results from a Test
	1	91
	2	86
	3	86
	4	83
	5	82
	6	79
	7	78
	8	76
	9	72
	10	69
	11	68
	12	67
	13	67
(14	65
	15	61
	16	60
	17	58
	18	58
	19	57
	20	56
	21	56
	22	55
	23	52
	24	50
	25	50
	26	15
	27	5
	Mean	63.04

Measures of variability/dispersion

- Index of Qualitative Variation (IQV)
 - For nominal variables
 - Ranges between 0 and 1
 - 0 if all of the cases fall into a single category
 - 1 if all of the cases are equally distributed across categories

Measures of variability/dispersion

- For interval/ratio variables, and ordinal variables with a large # of categories:
 - we can describe the *range* of the variables and *how the* scores are distributed about the mean (the *standard deviation*)
 - Ex. Night shift and day shift at an auto parts factory

Ex. Night shift and day shift at an auto parts factory

- Both shifts work an average of 52 hours per week
- Night shift have smaller *range* of hours worked compared to the day shift
 - 88-16 = 72 hours compared to 100-4 = 96 hours
- **Standard deviation** (SD) the higher the standard deviation, the higher the variability about the mean
 - SD is about 15 hours for the day shift, and about 9 hours for the night shift
 - There are more cases further from the mean for the day shift

Distributions

- contingency tables/cross tabs
- Statistics
 - tests of association

Contingency Tables (aka Bivariate Tables, Cross tabulation)

- Useful to produce *conditional distributions*
 - The distribution of one variable (Y), for each category of another (X)
 - Here, the distribution of smokers (Y) for each category of gender (X)

2. Bivariate Distributions/Statistics Contingency Tables

Contingency Tables

- Like frequency tables
 - Easier to understand when working with % than raw frequencies
- If table set up properly (X in rows), work with row %
 - Here more men smoke than women
 - 26.8% compared to 23.1%

Contingency Tables

- What about *column %* ?
 - distribution of X for each category of Y?
 - Offers less useful, or misleading information
 - 90.2 % of smokers are female, 9.8% are men
 - Dependent on the distribution of gender in the sample rather than smokers
 - Interpretation is different as well (as though smoking causes gender)

• Contingency tables are unweildy for interval/ratio (or even large ordinal) variables

- Scatter plots
 - A simple graphic way to display distributions of Y across categories of X when there are many categories of each
 - Can not be used with nominal variables

- Can see change in the distribution of Y for each change in X
- In this case, as
 age (X)
 increases,
 income (Y)
 also increases

This looks like a pretty *strong association*

we can clearly see that as age increases, income increases as well

This is a perfect association

- The strongest you can have
- For each increase in
 X we get an exact increase in Y
- The direction of this association is *positive*

- This is another perfect association
 - This time, the direction of the association is
 negative
 - As X increases, Y decreases

 Here we don't seem to have any association at all

3. Multivariate Relationships and Distributions/Statistics

3. Multivariate (many variables)

- Types of associations
 - Independent
 - Intervening
 - Interactive
 - Spurious
- Distributions and Statistics
 - 3 way contingency tables
 - Complex models for 3306 and grad school

1) Independent Relationships

• Each X has an independent effect on Y

2) Intervening Relationships

- All or part of an association between one variable to another is indirect
 - A third variable 'intervenes' between the two

3) Interactive Relationships

- One variable changes the relationship between two others
 X₂
 Y
- Effect of X₁ on Y varies by category of X₂
 - Ex. The effect of poverty (X_1) on mental health (Y) varies by gender (X_2)
 - Maybe poverty effects the mental health of men more than women

4) Spurious Relationships

 a 'false' association between X₁ and Y, caused by an antecedent variable (X₂) related to both

