- Assignment 3 is now posted (due: April 2nd)
- Complete ONE of the two assignments posted;
- either "OLS Linear" regression or "Logistic" regression.
- NOTE:
- RESULTS FROM ASSIGNMENT 3
 - -> RESULTS SECTION FOR YOUR FINAL PAPER

- Final exam: Tuesday April 17th, 2:00 p.m. (LH103)
- Final paper (due in my office, a week after the last class, Monday April 16th, 5:00 p.m.)

Today:

A few observations on Assignment 2

A few additional comments on "Binary Logistic Regression"

- -> how to handle independent variables
 - (categorical covariates; covariates)
- -> Nagelkerke R²
- -> Hosmer-Lemeshow Goodness of Fit index

Next class:

Tips on creating models, regardless of whether we are working with OLS or Logistic Regression..

• A few observations on Assignment 2

- Dependent variable: # of outings (per month)..
- Interval ratio dependent variable..
- perfect for OLS regression..
- 3 independent variables..
- Sex;
- # of close friends/relatives;
- Marital Status
- With OLS regression, MUST create "dummy variables" with "nominal variables"..

2 3 4 5	RECODE SEX (1=1) (2=0) INTO REC_SEX. VARIABLE LABELS REC_SEX 'Recoded Sex'. EXECUTE.	Sex 0. female	e; 1 male
6 7 8 9	RECODE MARSTAT (1=1) (2 thru 6=0) (8 thru 9=SYSMIS) INTO Married. VARIABLE LABELS Married 'married persons'. EXECUTE.	Married 0. no; 1 y	/es
10 11 12 13	RECODE MARSTAT (1=0) (2=1) (3 thru 6=0) (8 thru 9=SYSMIS) INTO COMLAW. VARIABLE LABELS COMLAW 'common law '. EXECUTE.		Common law 0. no; 1 yes
14 15 16 ▶ 17 18	RECODE MARSTAT (3=1) (1 thru 2=0) (4 thru 6=0) (8 thru 9=SYSMIS) INTO Wide VARIABLE LABELS Widow Widowed person'. EXECUTE.	_	ved 1 yes
19 20 21 22	RECODE MARSTAT (6=0) (1 thru 3=0) (4 thru 5=1) (8 thru 9=SYSMIS) INTO SEF VARIABLE LABELS SEPDIV 'separated/divorced'. EXECUTE.	PIV.	Sep/divorced 0. no; 1 yes
23 24 25 26	RECODE MARSTAT (6=1) (1 thru 5=0) (8 thru 9=SYSMIS) INTO SINGLE. Sing VARIABLE LABELS SINGLE 'single persons'. EXECUTE. 0. N		
27 28 29 30 31	REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT NUMEVACT /METHOD=ENTER Married COMLAW Widow SEPE		t for "SINGLE";
32 ≙ 33	DEPENDENT NOMEVACT /METHOD-ENTER Mamed COMLAW WIdow SEPL		020

Also sex, number of close relatives

NOTE THIS IS NOT IDENTICAL TO YOUR ASSIGNMENT (DIFFERENT SUB-SAMPLE)

Model Summary												
Model	R	R Square	Adjusted R	Std. Error of the Estimate								
1	.326 ^a	.106	.106	15.615								

 Predictors: (Constant), Number of close relatives and friends who live in the same city or community, Recoded Sex, common law, separated/divorced, widowed person, married persons

Excluded

(reference)

0. female 1. male

Single

Sex

R² = 0.106 .. Pretty good, right? IV's Explain over 10 percent of the Variance in our dependent variable..

Мо	odel	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	526519.804	6	87753.301	359.910	.000 ^b
	Residual	4429967.509	18169	243.820		
	Total	4956487.312	18175			

ANOVA^a

 Dependent Variable: Average number of evening activities respondent goes out for in a month

b. Predictors: (Constant), Number of close relatives and friends who live in the same city or community, Recoded Sex, common law, separated/divorced, widowed person, married persons

		Coeff	icients ^a		Marital status seems relevant			
		Unstandardize	d Coefficients	Stand unzed Coefficients				
Model		В	Std. Error	Beta	t	Sig.		
1	(Constant)	27.106	.281		96.494	.000		
	married persons	-9.447	.299	286	-31.629	.000		
	common law	-5.157	.441	094	-11.696	.000		
	widowed person	-17.574	.472	298	-37.245	.000		
	separated/divorced	-8.246	.423	159	-19.476	.000		
	Recoded Sex	3.098	.237	.093	13.094	.000		
	Number of close relatives and friends who live in the same city or community	.108	.008	.091	12.938	.000		

a. Dependent Variable: Average number of evening activities respondent goes out for in a month

all significant; p-value < .001

Married persons go out 9.4 times fewer than Singles

Men are going out more so then women.. ^{3.098 times} Many friends/relatives^{more..} encourage outings..

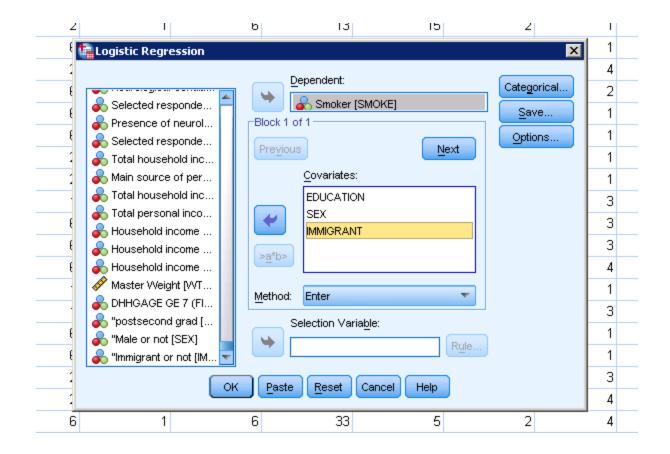
with each addition person in network, predict .108 additional outings

• What have we concluded?

Richmond Street, London ON

• What have we concluded?

• Enjoy yourself while you still can...


Working with Binary Logistic Regression

- Dependent variable:
- Smoking behavior..
- 0 no
- 1 daily smoker

DATASET ACTIVATE DataSet1. For the purpose of this assignment USE ALL. COMPUTE filter_\$=(DHHGAGE GE 7). we created 4 dichotomous variables VARIABLE LABELS filter_\$ 'DHHGAGE GE 7 (FILTER)'. VALUE LABELS filter \$ 0 'Not Selected' 1 'Selected'. FORMATS filter \$ (f1.0). FILTER BY filter \$. EXECUTE. RECODE SMK 202 (1=1) (2=0) (3=0) (7=SYSMIS) (8=SYSMIS) (9=SYSMIS) INTO SMOKE. VARIABLE LABELS SMOKE 'Smoker'. EXECUTE. RECODE EDUDR04 (1=0) (2=0) (3=1) (4=1) (7=SYSMIS) (8=SYSMIS) (9=SYSMIS) INTO EDUCATION. Post secondary grad VARIABLE LABELS EDUCATION "postsecond grad. EXECUTE. 0 – no; 1 - yes RECODE DHH_SEX (1=1) (2=0) INTO SEX. Sex VARIABLE LABELS SEX "Male or not'. EXECUTE. 0- female; 1- male RECODE SDCFIMM (1=1) (2=0) (7=sysmis) (8=sysmis) (9=sysmis) INTO ☐ IMMIGRANT. VARIABLE LABELS IMMIGRANT "Immigrant or not'. Immigrant EXECUTE. 0- no; 1- yes

1 4 *0	OMMU	NITYH	EALTH2	2010 .s a	v [Dat	:aSet1] - I	BM SPSS	Statistic	s Da	ita Edit	or						
File	Edit	⊻iew	<u>D</u> ata	Transt	form	<u>A</u> nalyze	<u>G</u> raphs	Utilities	Ac	ld- <u>o</u> ns	Windo	w	<u>H</u> elp				
	- ;)		K	Repo D <u>e</u> sc Table	riptive Sta	tistics	F F F	ł		¥.,			\$	▲ 14	9
	VERDATE GEI						oare Mean	s	F	ODBC		ADI			4 NOO	ADM NIO	
	_1					_	ral Linear		•	ODBU	9996	ADI	M_PRX 2		M_NO9 6	ADM_N10	
	2	_		10722		_		near Model	9		9996		2		2	1	-
	2			10722			Mixed Models				9996 9996		2		2	ו ר	-
	4	_		10722		_ <u>C</u> orre	elate		۲		9996		2		2	ے 1	-
	4 5	_		10722		<u>R</u> egr	ession		۴.	P A		ic Linea	ar Modeling		2	2	-
				10722		Loglir	near		۲		_ _inear		-		2		⊢
	7	_		10722		Class	si <u>f</u> y		۲		Curve Es	timatia	-		1	1	-
	 			10722		<u>D</u> ime	nsion Red	uction	۲		-				2	1	-
	9	_		10722		Sc <u>a</u> le	e		۲		Partial Le	-			2	1	-
	10	_		10722		Nonp	arametric	Tests	۲		Binary Lo	-			2	1	-
	11	_		10722			casting		Þ.	HULT N	Multinomi	ial Logi	stic		6	2	-
	12			10722		<u>S</u> urvi			•	R	Or <u>d</u> inal				2		\vdash
	-#2 13			10722			ole Respor	ise	2		Probit				6	1	+
	14			10722			ty Control		P	K N	Vonlinea	r			6	1	\vdash
	15			10722		ROC 💟	Cur <u>v</u> e	35939			- Neight E		on		6	2	+
	16			10722		24		24901					Squares		2		+
	40 17	_		10722		59		59952			5950	Loust	2 zguares	1	2	1	\vdash
	18			10722		46		46940			9996		2		1	1	+

Model Summary

Step	-2 Log likelihood	Cox & Snell R Square	Nagelkerke R Square
1	38157.967ª	.014	.023

 Estimation terminated at iteration number 5 because parameter estimates changed by less than .001.

Classification Table^a

				Predicte	d
			Smo	Percentage	
	Observed		.00	1.00	Correct
Step 1	Smoker	.00	35117	0	100.0
		1.00	7242	0	.0
	Overall P	ercentage			82.9

a. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	SEX	.313	.026	145.266	1	.000	1.368
	EDUCATION	312	.026	140.811	1	.000	.732
	IMMIGRANT	681	.043	255.408	1	.000	.506
	Constant	-1.452	.024	3805.837	1	.000	.234

a. Variable(s) entered on step 1: SEX, EDUCATION, IMMIGRANT.

Sex; men have 36.8 percent higher odds of smoking (1.368-1.0)*100 relative to women..

Education; post-secondary grads have 26.8 percent lower odds of smoking relative to non-grads, i.e. (0.732 - 1.0) *100 = -26.8% Immigration status; immigrants have 49.4 percent lower odds of smoking relative to

non-immigrants, i.e. (0.506 - 1.0) * 100 = 49.4%

Sex 0- female; 1- male

Education 0 - not a grad; 1 - post sec grad

Immigrant 0 – no; 1 - yes

All variables have a

significant effect.. P < .001

- Demographers speak of the:
- "Healthy Immigrant effect"..
- Populations with higher percentage immigrant in Canada tend to be healthier..
- Our results tend to suggest that the healthiest would be "immigrants" who are female and well educated...

http://www.statcan.gc.ca/pub/11-633-x/11-633-x2016003-eng.pdf Catalogue no. 11-633-X — No. 003 ISSN 2371-3429 ISBN 978-0-660-06457-4

Analytical Studies: Methods and References

The 2001 Canadian Census–Tax–Mortality Cohort: A 10-Year Follow-up

by Lauren Pinault, Philippe Finès, Félix Labrecque-Synnott, Abdelnasser Saidi, and Michael Tjepkema

Release date: October 26, 2016

Statistics Statistique Canada Canada

Table 2

Remaining life expectancy at age 25, by sex and selected socioeconomic and demographic variables

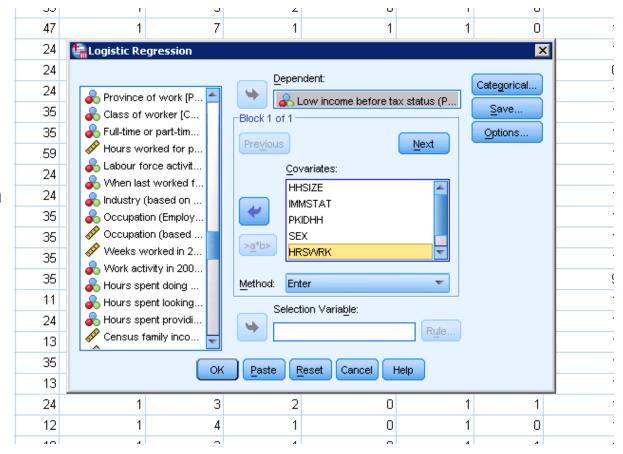
		Total			Men		Women			
	9	95% confi	dence	9	95% confi	dence		95% confi	dence	
		interv	al		interv	al		interv	al	
Category	Years	From	То	Years	From	То	Years	From	То	
				n	umber					
Total	56.8	56.8	56.9	54.6	54.5	54.6	59.0	59.0	59.1	
Educational attainment										
University degree	59.8	59.7	59.9	58.6	58.5	58.8	61.8	61.6	62.1	
Postsecondary non-university certificate										
or diploma	59.3	59.2	59.4	56.7	56.5	56.8	60.8	60.7	61.0	
High school with or without trades										
certificate	57.1	57.0	57.1	54.8	54.7	54.9	59.5	59.4	59.6	
Less than secondary school graduation	54.4	54.3	54.4	51.9	51.8	52.0	56.8	56.7	56.9	
Difference = university minus less than										
secondary school	5.4	5.4	5.5	6.7	6.7	6.8	5.0	4.9	5.1	
Income adequacy quintile (area)										
5 (highest)	58.9	58.8	59.0	57.4	57.2	57.5	60.8	60.6	60.9	
4	57.9	57.8	58.0	55.9	55.8	56.0	60.2	60.0	60.3	
3	57.1	57.0	57.2	55.0	54.9	55.1	59.5	59.4	59.6	
2	56.0	55.9	56.1	53.4	53.3	53.5	58.6	58.4	58.7	
1 (lowest)	53.8	53.7	53.8	50.5	50.4	50.6	56.2	56.1	56.3	
Difference = quintile 5 minus quintile 1	5.2	5.2	5.2	6.8	6.8	6.8	4.5	4.5	4.6	
Aboriginal identity										
No Aboriginal identity	57.1	57.1	57.2	54.9	54.9	55.0	59.3	59.2	59.3	
Any Aboriginal identity	50.1	49.9	50.3	49.0	48.7	49.3	52.3	52.0	52.6	
North American Indian identity only	49.7	49.4	49.9	47.5	47.2	47.9	51.8	51.5	52.2	
Métis identity only	52.9	52.4	53.4	50.7	50.1	51.3	55.2	54.5	55.9	
Inuit identity only	46.5	45.9	47.2	45.2	44.3	46.1	47.8	46.9	48.8	
Difference = not Aboriginal minus										
Aboriginal	7.0	7.2	6.9	5.9	5.7	6.1	7.0	6.7	7.3	
Visible minority status										
Not a visible minority	56.8	56.8	56.9	54.6	54.5	54.6	59.0	59.0	59.1	
Visible minority	60.8	60.6	60.9	58.9	58.7	59.1	62.5	62.3	62.7	
Chinese	61.9	61.6	62.1	59.9	59.6	60.3	63.6	63.2	64.0	
South Asian	60.0	59.7	60.4	58.9	58.3	59.4	61.4	60.9	62.0	
Black	59.6	59.2	60.1	57.2	56.7	57.8	61.3	60.7	61.9	
Filipino	60.1	59.6	60.6	57.4	56.7	58.2	61.9	61.2	62.6	
Latin American	60.4	59.5	61.4	57.1	56.1	58.1	62.6	61.3	63.9	
Southeast Asian	61.8	60.5	63.1	59.4	58.3	60.5	63.3	61.3	65.3	
Arab	59.5	58.6	60.4	57.7	56.7	58.8	62.9	61.1	64.7	
Difference = visible minority minus not										
visible minority	3.9	3.8	4.0	4.3	4.2	4.5	3.5	3.3	3.6	

Sources: Statistics Canada, 2001 Canadian census-tax-mortality cohort, derived from the 2001 Census of Population and the 2014 Amalgamated Mortality Database.

- MORE ON LOGISTIC REGRESSION:
- An issue with "logistic regression"...
- Recall that we <u>must</u> "dichotomize" our dependent variable in Logistic regression..
- What of the independent variables?
- In assignment 2, we worked with dichotomous independent variables for ease of introducing this method.. (smoking yes/no; Immigrant yes/no; Sex male/female;
- PS education yes/no)
- Yet in LOGISTIC regression
- How do we handle "independent variables that are not dichotomous"
- for example, "ethnicity" (with 7 categories) or "region" (with 12? categories)

Recall also:

In Linear regression: we have to work with "Dummy Variables" when we have independent variables that are either "nominal variables" or crudely categorized "ordinal variables".

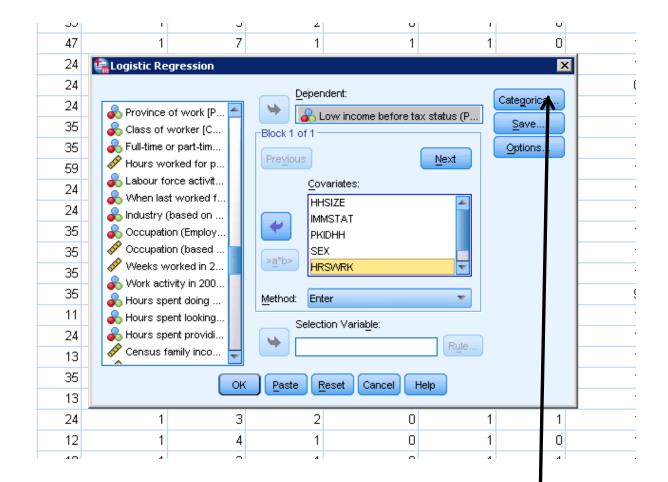

In Logistic regression: WE DO NOT HAVE TO COMPUTE "DUMMY VARIABLES!

Yet in working with SPSS, we must carefully consider "level of measurement" of all of our independent variables and potentially specify "reference categories" for our analysis...

How so?

Let's select several independent variables, in the explanation of "low income"

Household size Immigration status Sex Presence of children Hours worked


Must think of level of measurement when running a logistic model

- In LOGISTIC regression, all types of variables can be directly used in the SPSS procedure:
- it is merely necessary to identify "variables" as either a "covariate" or "categorical covariate"...
- In logistic regression, we refer to:
- **Covariates**: interval/ratio; ordinal variables
- **Categorical covariates**: nominal variables" or crudely categorized "ordinal variables".. (e.g. less than 5 categories)

Ex. Running a logistic regression on "low income" (0-no; 1-yes)

														CO	MMUNITYHE	\LTH2010.sav [[
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	Ado	d- <u>o</u> ns	<u>W</u> indow	<u>H</u> el	р				
8	-				Re	ports		۲	4	*	E	4				BC.
					De	scriptive Sta	atistics	۲	-					14 1		V
6 : AD	M_PRX		2		Та	bles		۲								
		VE	RDATE	GEO	G Co	<u>m</u> pare Mea	ns	۶.	HA	ADM_P	RX	ADM_N09		ADM_N10	ADM_N11	ADM_RNO
	1		201107	22	<u>G</u> e	neral Linea	r Model	•	9996	;	2		6	1	6	1
	2		201107		Ge	nerali <u>z</u> ed Li	near Model	ls⊳	9996		2		2	1	6	-
	3		201107		Mix	ed Models		•	9996		2		2	2	2	
	4		201107		<u>C</u> 0	rrelate		•	9996	;	2		2	1	6	
	5	<u> </u>	201107		<u>R</u> e	gression		•		Automatic L	inear	Modeling		2	2	
	6	1	201107		Lo	glinear		•		– Linear		2		1	6	-
	7	1	201107		Cla	ssify		•		Curve Estin	action			1	6	
	8		201107		Dir	nension Re	duction	•		_				1	6	-
	9		201107		Sc	ale				Partial Leas				1	6	
	10	1	201107			- nparametrio	c Tests	•		Binary Logi	stic		_	1	6	
	11	1	201107		_	recasting			R	<u>M</u> ultinomial	l Logi	stic		2	2	
	12	1	201107			vival			R	Or <u>d</u> inal				1	6	
	13]	201107		-	ltiple Respo	onse		R	Probit				1	6	
	14]	201107		-	ality Control		÷.		Nonlinear			_	1	6	
	15	1	201107			C Curve		r		Weight Esti		n	-	2	2	
	16	1	201107				50			_			-	1	6	
	17	1	201107		59	599				2-Stage Le				1	6	
	18	1	201107		46	469			9996		2		1	1	6	
	19	1	201107		35	359			9996		2		6	1	6	
	20	1	201107		35	359			9996		2		6	1	6	
	21	1	201107		35	359			9996		2		6	1	6	
	22	1	201107		59	599			5910		2		1	1	6	
	23	J	201107	22	12	129	06		9996		2		1	1	6	12

Let's select several independent variables, in the explanation of "low income"

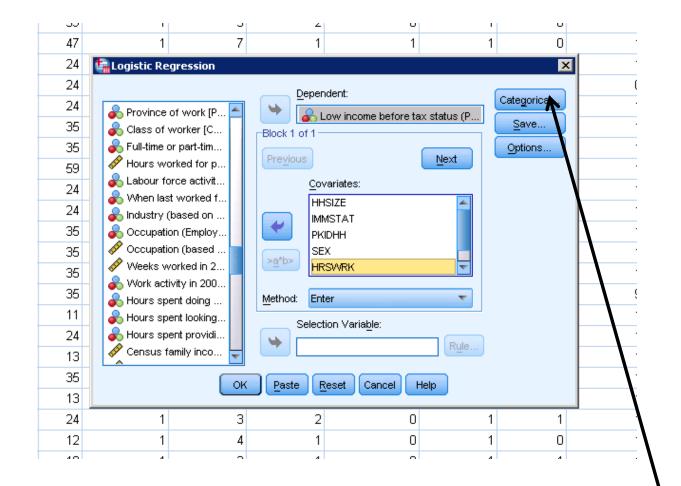
This is where we assign variables as either "categorical covariates" or as "covariates"

Household size covariate Immigration status categorical covariate Sex categorical covariate Presence of children categorical covariate Hours worked covariate Province categorical covariate

Low Income

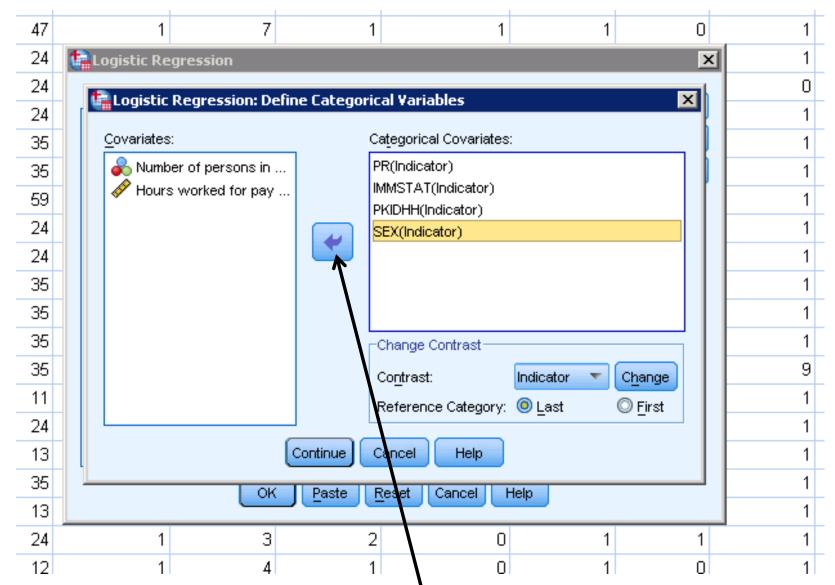
Covariate - interval/ratio; ordinal variables

Categorical covariate -


nominal variables" or crudely categorized "ordinal variables", with more than 2 categories

Note: if a nominal or ordinal variable is dichotomous (yes no; high low), you can actually treat it as a covariate or a categorial covariate.

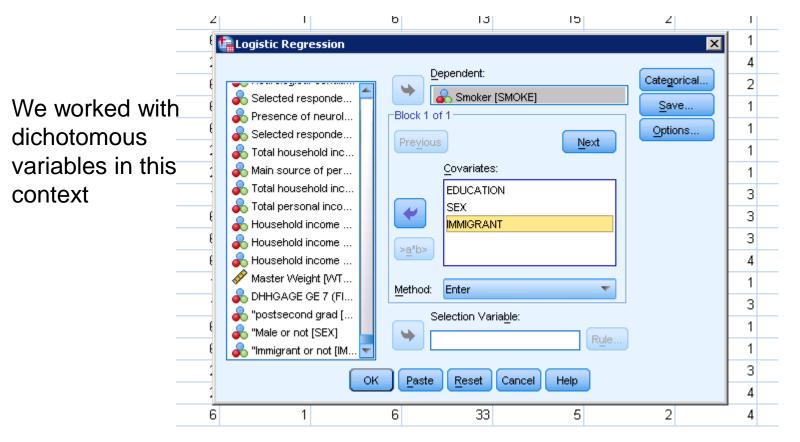
My rule of thumb: I only treat interval/ratio and ordinal variables as covariates.. Everything else, as a categorical covariate


DEPENDENT VARIABLE

Let's select several independent variables, in the explanation of "low income"

Assign variables as either "categorical covariates" or as "covariates"

Two boxes: covariates & categorical covaraites

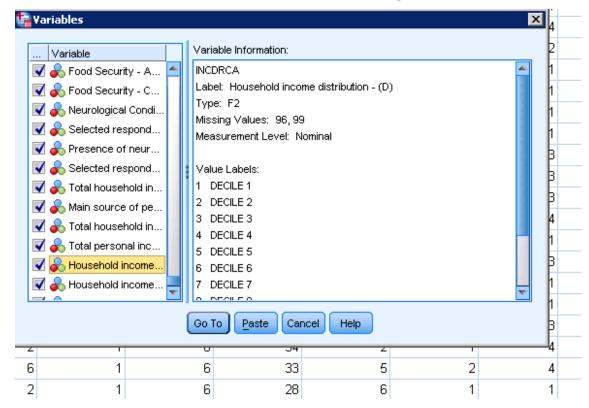


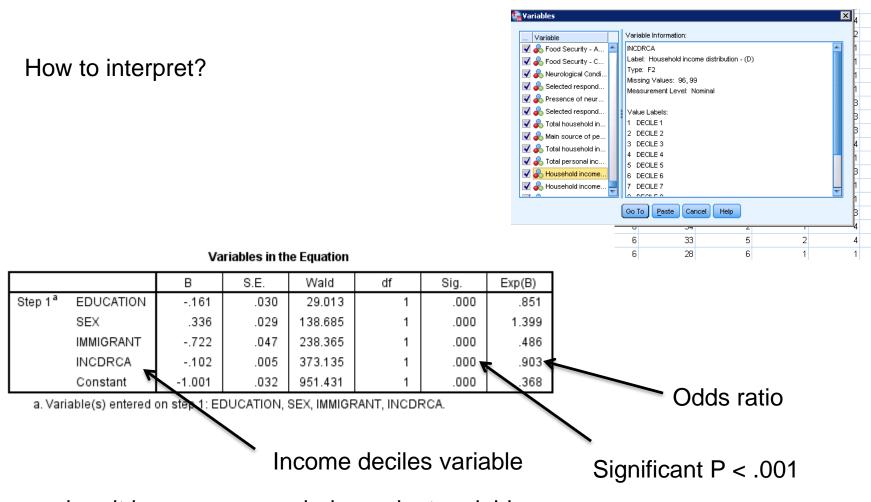
Default is "covariate"..

Can move back and forth across 2 boxes

- Returning to the example from our assignment 2.. on smoking behavior..
- How do we interpret "covariates" in

Logistic regression??

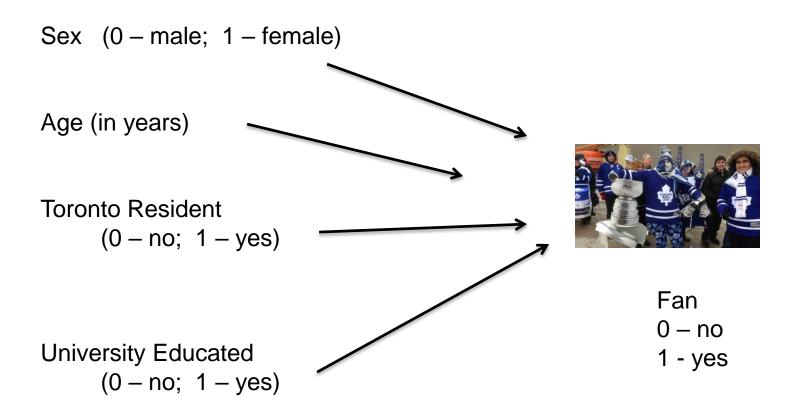

What if we added an additional variable:


Income decile of the respondent?

Does the respondent fall in the bottom 10 % of income earners, the second 10%,... the top 10 per cent, etc?

This is an interval/ratio variable..

Must introduce it as a "covariate" and not a "categorical covariate"...



For each unit increase on our independent variable, we expect the lower odds of smoking...

In moving into the next higher "income decile", we would expect that the odds of smoking would be lower by 9.7 per cent (0.903 - 1.0) * 100

Returning to our Maple Leafs example:

Obviously, more complex models are possible with many independent variables..

 $\ln[p/(1-p)] = a + b_1 X_1 + b_2 X_2 + b_3 X_3 + b_4 X_4$

Dependent variable: Toronto Maple Leaf Fan (0 no, 1 yes)

Sex: 0 male, 1 female Age: years Toronto Resident 0 no, 1 yes Univ educated 0 no, 1 yes

eb

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	Sex X1	b1780	.124	39.624	1	.000	.458
	Age X2	b2 .020	.004	32.650	1	.000	1.020
Toronto Re	esident X3	<mark>b3</mark> 1.618	.197	67.534	1	.000	5.044
University e	educatedX4	b4023	.020	1.370	1	.242	.977
C	onstant	<mark>a</mark> -2.246	.363	38.224	1	.000	.106

Variables in the Equation

a. Variable(s) entered on step 1: Sex Age Toronto Resident University educated

Which b's are significant?

Age is the only covariate: others are categorical, right?

? For each additional year of age, we expect the odds of being a fan to go up by about 2 per cent... $(1.020 - 1.0)^*$ 100

We must be careful in working with "categorical variables"...

Nominal variables...

Last week, merely entered "dummy variables" as independent... and they were Treated like any other variable (default, treated like a covariate).

There is a more preferred procedure...

Treat them as a "categorical covariate", and specify reference category..

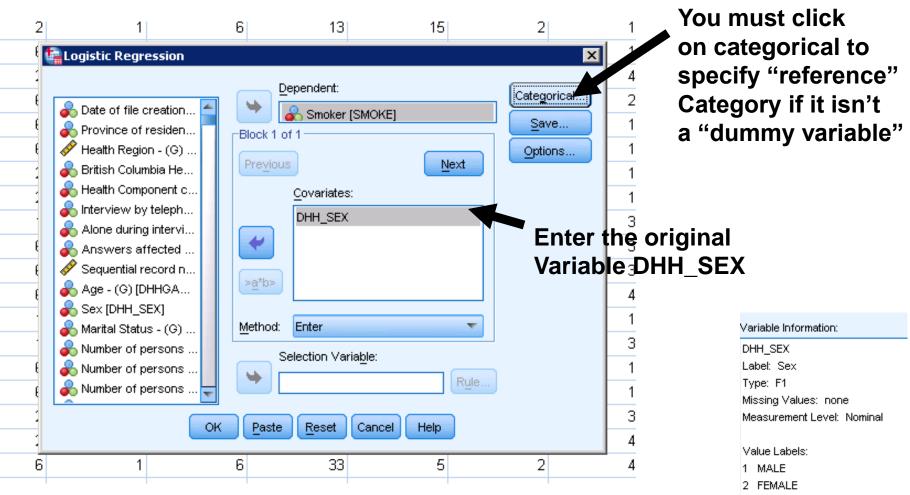
- Returning to our original smoking example,
- Considering exclusively Sex and Smoking
- Original independent variable

Variable Information:

DHH_SEX Label: Sex Type: F1 Missing Values: none Measurement Level: Nominal

Value Labels:

1 MALE

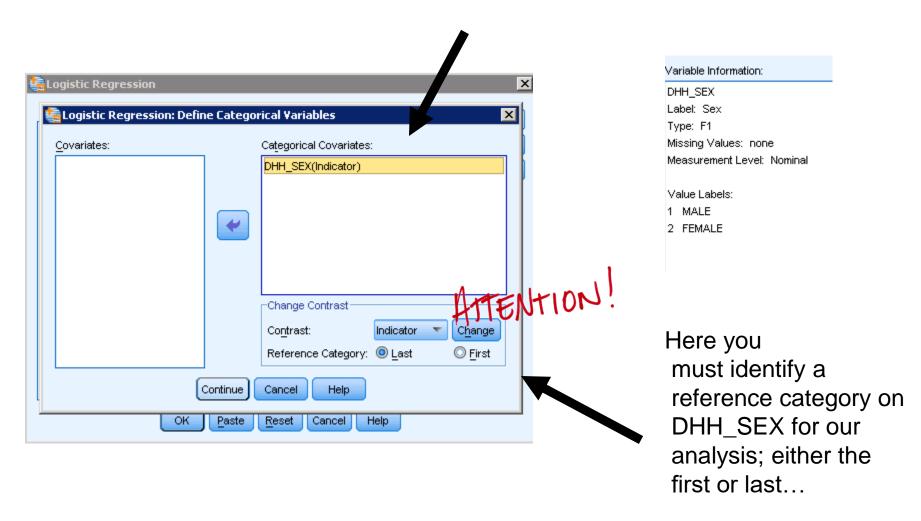

2 FEMALE

- How to work with "nominal variables" in Logistic Regression.
- With dichotomous variables
- Choice:

.

- You can either create and work with dummy variables, or
- You can enter your original variable directly without creating dummies (recommended)
- If the latter:
- 1. must always assign nominal variables as "categorical covariate" &
- 2. must identify a **reference category** for your analysis (details forthcoming)
- Example:
- Let's "not create" a dummy variable for sex,
- but merely enter the original variable into the logistic regression procedure"..

Can merely introduce DHH_SEX into our logistic model



BUT:

Must identify it as a "categorical covariate... click on arrow to move it over..

2	I	ь	13	15	2	I	U
E	Logistic Regression				×	1	0
	4				E L	4	0
E	Logistic Regressi	on: Define Late	gorical ¥ariables		×	2	0
E	<u>C</u> ovariates:		Categorical Cov	/ariates:		1	0
E	💑 Sex (DHH_SEX)					1	0
-			7		ſ	1	0
-						1	0
· ·						3	0
E						3	0
E						3	0
E			Change Contra	ast		4	0
			Contrast:		Change	1	1
-			_			3	0
E			Reference Ca	tegory: 🔘 Last	© <u>F</u> irst	1	0
E		Continue	Cancel H	elp		1	1
-	·					3	0
-		OK Paste	Reset Cano	el Help		4	0
6	1	6	33	5	2	4	1
2	1	6	28	6	1	1	1
2	1	6	51	12	2	3	0

The variable is now identified as a "categorical" variable in the regression..

Here we click "the last" to denote

"FEMALE" as our reference category (don't forget to click "change)...

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	39722.820 ^a	.003	.006

 a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification Table^a

			Predicted					
			Smo	oker	Percentage			
	Observed		.00	1.00	Correct			
Step 1	Smoker	.00	36318	0	100.0			
		1.00	7431	0	.0			
	Overall Pe	ercentage			83.0			

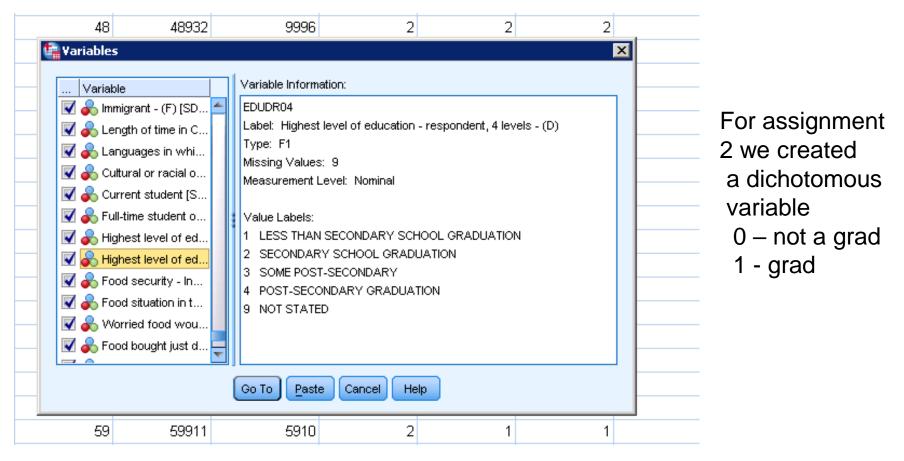
a. The cut value is .500

Variables in the Equation

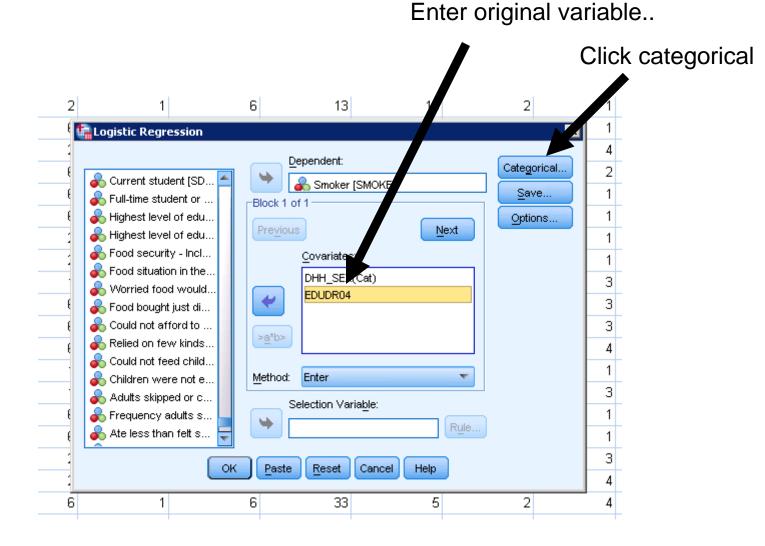
		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	DHH_SEX(1)	.309	.026	146.336	1	.000	1.361
	Constant	-1.732	.018	9313.011	1	.000	.177

a. Variable(s) entered on step 1: DHH_SEX.

Note: what if our reference category Was "male" rather than "female"?


Same result as with the dummy variable..

We denoted females as the reference category


The odds are 36.1 per cent higher for males than females

Our Odds ratio would be: 0.659 (0.659 – 1.0)*100 -> 36.1 per cent lower

ANOTHER EXAMPLE FROM LAST WEEK:

Alternatively, you can merely enter the variable as is, and correctly identify a "reference" category for our analysis..

Assign as a categorical variable

2	1	ь	13	15	2	ï
E 💽	Logistic Regression				×	1
	http://www.com/communication/com	n Dofino Cator	avical Vaviables		X	4
E [n: Denne Categ	junical variables			2
E	<u>C</u> ovariates:		Categorical Cov	rariatez		1
E			DHH_SEX(Indic			1
1			EDUDR04(Indic	ator(first))		1
1						1
						3
E						3
E						3
E			Change Contra	ast		4
·			Contrast:	Indicator	Change	1
			_	egory: 🧿 Last	○ First	3
E						1
E		Continue	Cancel H	elp		1
- 1		OK Paste	Reset Cano	el Help		3
:		Und Laste				4
6	1	6	33	5	2	4

Assign as a categorical variable

2	1	ь	13	15	2		1	
- (Logistic Regression					×	1	
-	Logistic Regression: D	efine Categ	orical Variables		×		4	
ł	Covariates:		Categorical Cov	ariates:		1 –	2	
E			DHH_SEX(Indic				1	
-			EDUDR04(Indic	ator(first))		ľ 🗆	1	riable Information:
1							1 -	VUDR04
		-					- -	bel: Highest level of education - respondent, 4 pe: F1
E							3Mi	ssing Values: 9
							J	easurement Level: Nominal
-			Change Contra	ast				alue Labels: _LESS THAN SECONDARY SCHOOL GRADUA'
_			Co <u>n</u> trast:	Indicator [*]	Change		2	SECONDARY SCHOOL GRADUATION
F			Reference Cat	egory: 🧿 Last	© <u>F</u> irst			SOME POST-SECONDARY POST-SECONDARY GRADUATION
Ē		Continue	Cancel	elp 📉			9 1	NOT STATED
							3	Т
1	_ Oł	Paste	Reset Canc	Help			4	
6	1	6	33	5	2		4	
						Ā	ssian "p	ost-sec" grad
						-	• •	foronco catogory

as our reference category

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	38473.238 ^a	.009	.015

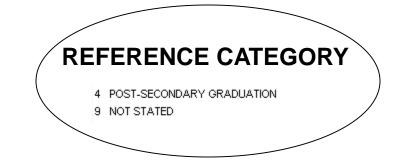
 Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification Table^a

	-			Predicted					
			Smo	Percentage					
	Observed		.00	1.00	Correct				
Step 1	Smoker	.00	35234	0	100.0				
		1.00	7258	0	.0				
	Overall Pe	ercentage			82.9				

a. The cut value is .500

Variables in the Equation

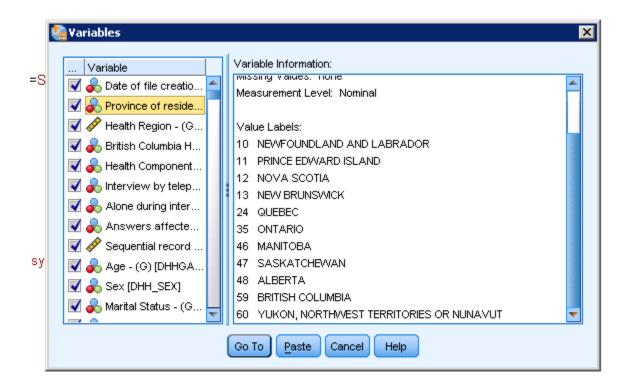

		В	S.E.	Wald	df	Sig.	Exp(B)]
Step 1 ^a	DHH_SEX(1)	.318	.026	150.617	1	.000	1.375	1
	EDUDR04			239.735	3	.000		
	EDUDR04(1)	.418	.032	174.828	1	.000	1.518	
	EDUDR04(2)	.339	.036	90.038	1	.000	1.404	
	EDUDR04(3)	.463	.052	80.017	1	.000	1.589	
	Constant	-1.917	.023	7097.688	1	.000	.147	

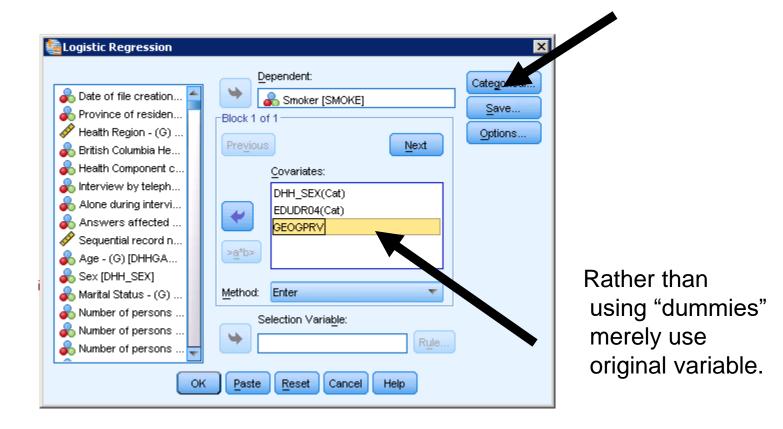
a. Variable(s) entered on step 1: DHH_SEX, EDUDR04.

Relative to "our reference category" (post-sec grads), persons with less than secondary have 51.8 percent higher odds of smoking,

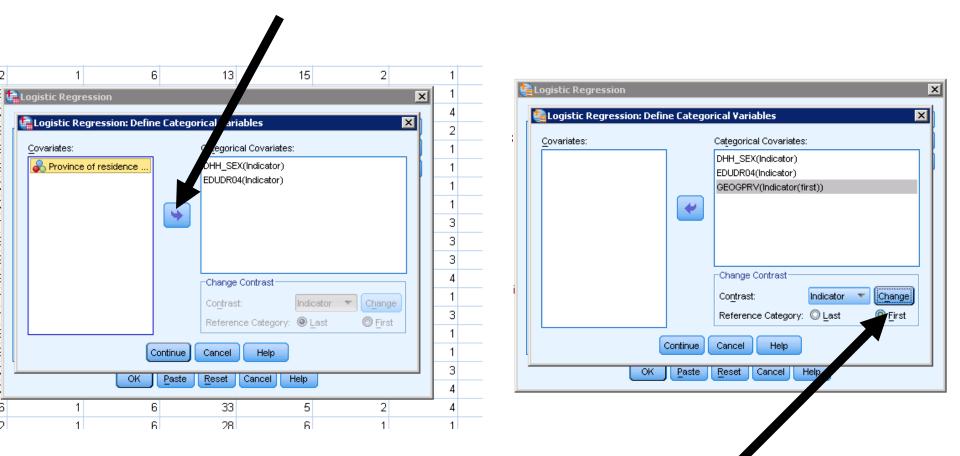
Relative to the same reference category, persons with secondary degree have 40.4 percent higher odds.

Relative to same reference, persons with "some post-secondary" have 58.9 per cent higher odds




Variable	e Information:
EDUDR	04
Label:	Highest level of education - respondent, 4 levels - (I
Type:	F1
Missing	;Values: 9
Measu	rement Level: Nominal

Value Labels:


- 1 LESS THAN SECONDARY SCHOOL GRADUATION
- 2 SECONDARY SCHOOL GRADUATION
- 3 SOME POST-SECONDARY

• Another example.. Say we want to consider province of residence?

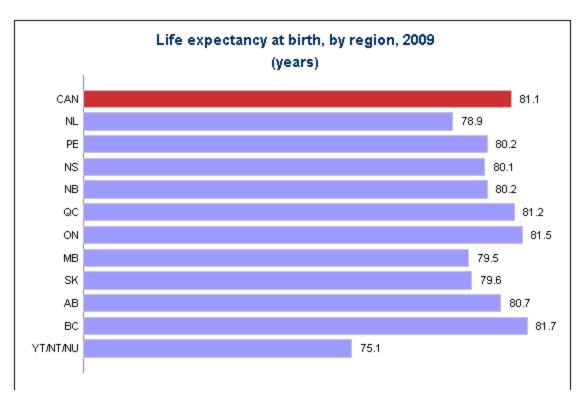
Assign it as a categorical variable..

Here we assign Nfld and Labrador as our reference category (the first category on GEOGPRV

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)	
Step 1 ^a	DHH_SEX(1)	.312	.026	144.062	1	.000	1.366	Value Labels:
	EDUDR04	1	1 '	234.425	3	.000	1 '	10 NEWFOUNDLAND AND LABRADOR
	EDUDR04(1)	.398	.032	156.017	1 1	.000	1.489	
	EDUDR04(2)	.354	.036	97.676	1	.000	1.425	
	EDUDR04(3)	.482	.052	86.201	1	.000	1.620	
	GEOGPRV	1	1 '	169.618	10	.000	1 '	
	GEOGPRV(1)	026	.122	.047	1	.829	.974	11 PRINCE EDWARD ISLAND
	GEOGPRV(2)	.042	.095	.194	1	.660	1.043	12 NOVA SCOTIA
	GEOGPRV(3)	.092	.094	.943	1	.331	1.096	13 NEW BRUNSWICK
	GEOGPRV(4)	.044	.077	.327	1	.567	1.045	24 QUEBEC
	GEOGPRV(5)	153	.075	4.197	1	.040	.858	35 ONTARIO
	GEOGPRV(6)	121	.091	1.786	1	.181	.886	46 MANITOBA
	GEOGPRV(7)	005	.088	.003	1	.954	.995	47 SASKATCHEWAN
	GEOGPRV(8)	.054	.083	.430	1	.512	1.056	48 ALBERTA
	GEOGPRV(9)	268	.081	10.845	1	.001	.765	59 BRITISH COLUMBIA
	GEOGPRV(10)	.666	.103	42.037	1	.000	1.946	60 YUKON, NORTHWEST TERRITORIES OR NUNAVUT
	Constant	-1.860	.074	637.588	1	.000	.156	

a. Variable(s) entered on step 1: DHH_SEX, EDUDR04, GEOGPRV.


Persons in the far north (Yukon, NWT and Nunavut) are most likely to smoke.. .. The odds are 94.6 per cent higher than in NFLD and Labr (reference)..

Persons in BC are least likely to smoke...

The odds are 23.5 per cent lower than in NFLD and Labr (reference)..

(0.765 - 1.0) * 100 = 23.5

- Substantive note:
- Did you know?

IMPORTANT REMINDER:

Again,.. this has nothing to do with OLS linear regression.

We MUST ALWAYS work with Dummy variables as independent variables when we work with nominal variables in linear regression (religion; ancestry; immigrant status, etc)..

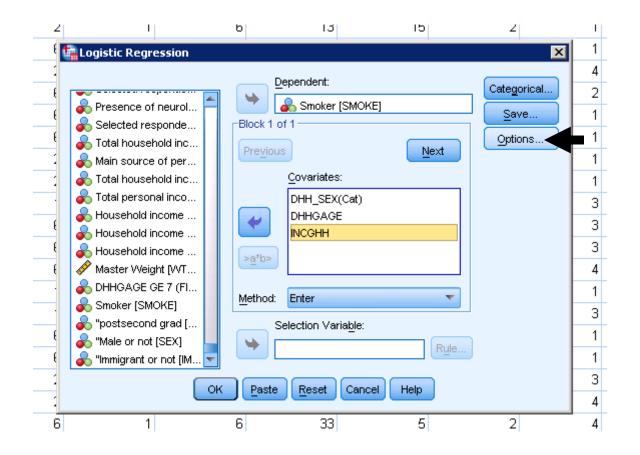
Also:

This has nothing to do with your dependent variable in Logistic regression: We MUST always use dichotomous variables as our dependent variable (no exceptions)

- Two final things on "Logistic Regression".. Relating to overall model performance..
- Nagelkerke's R^2
- Hosmer–Lemeshow test

- Two final things on "Logistic Regression"
- Nagelkerke's R^2

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	38311.455 ^a	.013	.021


 Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

- In the linear regression model, R^2 , summarizes the proportion of variance in the dependent variable associated with the predictor (independent) variables. NOTE: THE Nagelkerke's R2 does not involve "explained variance".
- For logistic regression models with a categorical dependent variable, it is not possible to compute R^2
- *Recommendation: Use Nagelkerke's R²*

- referred to as a "psuedo R^2 measure"..

- Greater than 0.10 we are doing quite well... in the above example, the model is not doing a very good job in explaining our dependent variable
 - $R^2 = .021$
- Technically speaking, it is based on the log likelihood for the model (all independent variables) compared to the log likelihood for a baseline model (no independent variables), adjusted to cover the full range from 0 to 1.
- (do not refer to "explained variance" with this statistic)

- One additional test of "Goodness of Fit" indicator
 (indicator on overall model performance)
- Hosmer–Lemeshow test (we'll consider it the "Gold" standard..)
- The **Hosmer–Lemeshow test** is a <u>statistical test</u> for <u>goodness of fit</u> for <u>logistic regression</u> models.
- The test assesses whether or not the observed probabilities match expected probabilities as predicted by the full model
- Recall from last week:
- Logistic regression is based on "MLE" estimation; an iterative process that attempts to come up with a series of predicted probabilities that are as close to possible to the initial observed probabilities
- This test determines helps us identify how successful MLE estimation given the variables involved..
- Goodness-of-fit tests help you decide whether your model is correctly specified (are we missing important variables?)

2	1	D	Э	I	I		4	U	U	
2	1	6	19	16	1		1	0	0	
2	1	6	13	15	2		1	0	0	
E	ta Logi 💼 Logis	stic Regression: (Intions		×	×	1	0	0	
1			sperons				4	0	0	
E	D Stat	istics and Plots				rical	2	0	0	
E	PI 🗆	<u>Classification</u> plots		e	1	0	0			
E	🛷 н 🛛 🔽	Hosmer-Lemeshov	v goodness-of-fit	ns	1	0	0			
:	B B	Casewise listing or	f residuals	CI for exp(B):	95 %		1	0	0	
:	()	Outliers outside			1	0	0			
		All cases	2 Stu. uev.				3	0	0	
E	🕹 🗛 🚽 – Disp						3	0	0	
E	🖋 S 🛛 🔘	At <u>e</u> ach step 🔘 A	t last step				3	0	0	
E			-				4	0	0	
•	🔷 м	bability for Stepwise		Classificatio	n c <u>u</u> toff: 0.5		1	1	0	
	N Entr	y: 0.05 Remo <u>v</u> al:	0.10	Maximum Ite			3	0	0	
E	🕹 N 👘 👘			Maximum ite	rations: 20		1	0	0	
E	💊 N 🛛 🗹 Ir	nclude con <u>s</u> tant in n	nodel				1	1	1	
:		Co	ntinue Cancel	Help			3	0	0	
1							4	0	0	
6	1	6	33	5	2		4	1	0	
2	1	6	28	6	1		1	1	0	
2	4	C	广4	40	2		2	0	0	

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	38311.455 ^a	.013	.021

 a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Counterintuitive: In contrast to most tests of significance, here we hope for p-value > .05!!! Rather than < .05

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	14.829	8	.063

This is good!!

Contingency Table for Hosmer and Lemeshow Test

		Smoker = .00		Smoker = 1.00		
		Observed	Expected	Observed	Expected	Total
Step 1	1	5554	5562.029	729	720.971	6283
	2	3885	3931.091	663	616.909	4548
	3	3652	3614.828	565	602.172	4217
	4	3571	3553.663	634	651.337	4205
	5	3526	3499.153	659	685.847	4185
	6	3483	3498.249	783	767.751	4266
	7	3089	3082.477	704	710.523	3793
	8	3336	3345.276	849	839.724	4185
	9	3259	3305.669	1025	978.331	4284
	10	1879	1841.565	647	684.435	2526

We are interested in whether or not the observed probabilities match expected probabilities as predicted by the full model

Hoping for a "non-significant" difference..

-

- Final comments:
- For the purposes of our work,.. We shall report only:
- Nagelkerke's R^2
- Hosmer–Lemeshow test can be considered a "gold standard"
- (we shall use it as a diagnostic tool).. But I accept a "silver" or "bronze" in this context..
- .. A p-value < .05 on this test suggests the model remains "misspecified" and that important variables have been excluded..

If you can't succeed with this., don't worry too much about it..