Last week (Chapter 10)

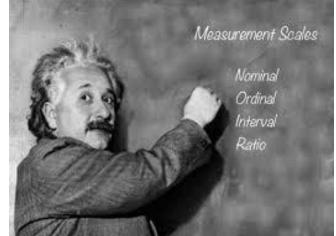
Bivariate table, association and Chi square test of independence...

Why do we use Chi square?

To determine whether there is a "significant" association between variables.. (note: we are working with samples, not the full population) Examples: Education & smoking?

Place of Study and employment status??

Month of birth & Success as an Athlete?



Today (Chapter 11)

More on: Associations between Variables and the Bivariate Table (Crosstab)

Three fundamental questions that we ask in examining bivariate associations (significance? strength? pattern?)

A few measures of association Phi, Cramer's v and Lambda.. (<u>nominal variables</u>)..

Introduction to Bivariate Association

In a bivariate table:

Evidence for an association exists if the conditional distributions of one variable change across the values of the other variable.

Always useful to produce Column %'s

Interview 400 persons (S	ample size)							
	Quarter of	f <mark>birth</mark> :						
	First (Jan-	March)	Second (A	pril-June)	Third (July	-Sept)	Fourth (Oc	t-Dec)
Universtiy Athlete	37	37%	30	30%	18	18%	15	15%
Non-Athlete	63	63%	70	70%	82	82%	85	85%
	100		100		100		100	

Note: To determine whether it is significant or not requires a "significance test" (chi square).

Interview	400 persons (S	ample size)							
		Quarter of b	pirth:						
		First (Jan-M	larch) Second	l (April-June)	Third (July	-Sept)	Fourth (Oc	t-Dec)	TOTAL
Universtiy	Athlete	37		30	18		15		100
Non-Athle	te	63		70	82		85		300
	TOTAL	100		100	100		100		400
Is there as	significant rela	tionship?					_		

Is there a relationship between "month of birth" and "success as an "11-59" "athlete"..

Performing the Chi Square Test Using the Five-Step Model

Step 1: Make Assumptions and Meet Test Requirements

• Independent random samples

4 samples, by month of birth (First quarter, 2nd quarter, etc).

Level of measurement:

Nominal: University Athlete or not

Step 2: State the Null Hypothesis

- *H*₀: The variables are independent
 - Another way to state the H₀, more consistently with previous tests:

$$-H_0: f_0 = f_e$$

- *H*₁: The variables are dependent
 - Another way to state the H_1 :

$$-H_1: f_o \neq f_e$$

Step 3: Select Sampling Distribution and Establish the Critical Region

Interview	400 persons (S	ample size)				
		Quarter of bi	rth:			
		First (Jan-Ma	rch) Second (A	pril-June) Third (Jul	y-Sept) Fourth (0	Oct-Dec) TOTAL
Universti	Athlete	37	30	18	1	5 100
Non-Athl	ete	63	70	82	8	5 300
	TOTAL	100	100	100	10	0 400

df = (4-1)(2-1) = 3

- Sampling Distribution = χ^2
- Alpha = .05
- df = (r-1)(c-1)
- χ² (critical) = ?

Appendix C

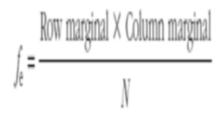
Distribution of Chi Square

Critical values at alpha =.05

											K			
	.99	.98	.95	.90	.80	.70	.50	.30	.20	.,	.05	.02	.01	.001
1 2 3 4 5	.000 .0201 .115 .297 .554	.001 .0404 .185 .429 .752	.004 .103 .352 .711 1.145	.016 .211 .584 1.064 1.610	.064 .446 1.005 1.649 2.343	.148 .713 1.424 2.195 3.000	.455 1.386 2.366 3.357 4.351	1.074 2.408 3.665 4.878 6.064	1.642 3.219 5.989 7.289	2.706 4.105 7. 79 9.236	3.841 5.991 7.815 9.488 11.070	5.412 7.824 9.837 11.668 13.388	6.635 9.210 11.341 13.277 15.086	10.827 13.815 16.268 18.465 20.517
6 7 8 9 10	.872 1.239 1.646 2.088 2.558	1.134 1.564 2.032 2.532 3.059	1.635 2.167 2.733 3.325 3.940	2.204 2.833 3.490 4.168 4.865	3.070 3.822 4.594 5.380 6.179	3.828 4.671 5.527 6.393 7.267	5.348 6.346 7.344 8.343 9.342	7.231 8.383 9.524 10.656 11.781	8.558 9.803 11.030 12.242 13.442	10.645 12.017 13.362 14.684 15.987	12.592 14.067 15.507 16.919 18.307	15.033 16.622 18.168 19.679 21.161	16.812 18.475 20.090 21.666 23.209	22.457 24.322 26.125 27.877 29.588
11 12 13 14 15	3.053 3.571 4.107 4.660 5.229	3.609 4.178 4.765 5.368 5.985	4.575 5.226 5.892 6.571 7.261	5.578 6.304 7.042 7.790 8.547	6.989 7.807 8.634 9.467 10.307	8.148 9.034 9.926 10.821 11.721	10.341 11.340 12.340 13.339 14.339	12.899 14.011 15.119 16.222 17.322	14.631 15.812 16.985 18.151 19.311	17.275 18.549 19.812 21.064 22.307	21.026	22.618 24.054 25.472 26.873 28.259	26.217 27.688 29.141	31.264 32.909 34.520 36.120 37.690
16 17 18 19 20	5.812 6.408 7.015 7.633 8.260	6.614 7.255 7.906 8.567 9.237	7.962 8.672 9.390 10.117 10.851	9.312 10.085 10.865 11.651 12.443	11.152 12.002 12.857 13.716 14.578	12.624 13.531 14.440 15.352 16.266	15.338 16.338 17.338 18.338 19.337	18.418 19.511 20.601 21.689 22.775	20.465 21.615 22.760 23.900 25.038	27.204	26.296 27.587 28.869 30.144 31.410		33.409 34.805 36.191	39.25 40.79 42.31 43.82 45.31
21 22 23	8.897 9.542 10.196	9.915 10.600 11.293	11.591 12.338 13.091	13.240 14.041 14.848	15.445 16.314 17.187	17.182 18.101 19.021	20.337 21.337 22.337	23.858 24.939 26.018	26.171 27.301 28.429	29.615 30.813 32.007	33.924 35.172	38.968	40.289	48.26 49.72

Step 3: Select Sampling Distribution and Establish the Critical Region

- Sampling Distribution = χ^2
- Alpha = .05
- df = (r-1)(c-1) = 1
- χ^2 (critical) = 7.851


$$df = (4-1)(2-1) = 3$$

	ample size)								
	Quarter of	birth:							
	First (Jan-I	March)	Second (A	pril-June)	Third (July	-Sept)	Fourth (Oc	t-Dec)	TOTAL
thlete	37		30		18		15		100
e	63		70		82		85		300
OTAL	100		100		100		100		400
•	Athlete e OTAL	Athlete 37 e 63	Athlete 37 e 63	Athlete 63 70	Athlete 63 70	Athlete 63 70 82	Quarter of birth: Quarter of birth: Image: Constraint of the second secon	Athlete 63 70 82 85	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Step 4: Calculate the Test Statistic

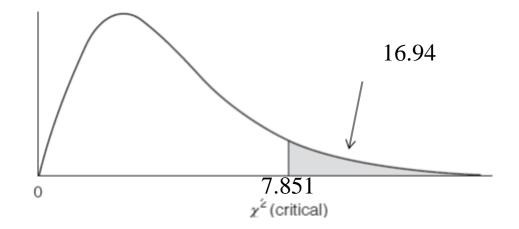
• fo

400 persons (S	ample size)								
	Quarter of	birth:							
	First (Jan-N	March)	Second (A	pril-June)	Third (July	-Sept)	Fourth (O	ct-Dec)	TOTAL
Athlete	37		30		18		15		100
te	63		70		82		85		300
TOTAL	100		100		100		100		400
	400 persons (S Athlete te TOTAL	Athlete 37 te 63	Athlete 63	Athlete 63 70	Athlete 37 30 te 63 70	Athlete 37 30 18 te 63 70 82	Athlete 37 30 18 te 63 70 82	Athlete 37 30 18 15 te 63 70 82 85	Athlete 37 30 18 15 te 63 70 82 85

fe

	First	second	third	fourth
Univ athlete	25	25	25	25
Non-athlete	75	75	75	75

Create our corresponding Table for calculating chi square..


f0	fe	f0-fe	(fo-fe) ²	(fo-fe) ² /fe
37	25	12	144	5.76
63	75	-12	144	1.92
30	25	5	25	1.00
70	75	-5	25	0.33
18	25	-7	49	1.96
82	75	7	49	0.65
15	25	-10	100	4.00
85	75	10	100	1.33

$$\chi^2 \text{(obtained)} = \sum \frac{(f_o - f_e)^2}{f_e} = 16.94$$

Step 5: Make Decision and Interpret Results

- χ² (critical) = 7.851
- χ^2 (obtained) = 16.94
- The test statistic is in the Critical (shaded) Region:

- We reject the null hypothesis of independence.
- Opinion on healthcare privatization is associated with political ideology.

- Bivariate association can be investigated by finding answers to three questions:
 - 1. Does an association exist (significance)?
 - 2. How strong is the association?
 - 3. What is the pattern or direction of the association?

1. Does an association exist?

- To detect association within bivariate tables:
 - 1. Calculate percentages within the categories of the independent variable.
 - 2. Compare percentages across the categories of the independent variable.
 - 3. Also: Chi Square test of Independence formally determines "statistical significance"

Careful!!!!!!!! In setting up your crosstab!!!!

- When independent variable is the column variable (in this course):
 - Calculate percentages within the columns (vertically).
 Column percentages are conditional distributions of Y for each value of X.
 - 2. Compare percentages **across** the columns (horizontally).

Follow this rule:

"Percentage Down, Compare Across"

Example: Does an association exist?

- Forty-four departments within a large organization have been sampled (N= 44)
- Each department has been rated:
- the extent to which the departmental supervisor practices "authoritarian style of leadership and decision making"
- the "efficiency (productivity) of workers within the department"
- Ask question: Does an association exist?
- Which is the likely dependent variable?
- Management style ______ efficiency

Does an association exist? Example

- The table below shows the relationship between:
- $_{\circ}$ authoritarianism of supervisors (X) and
- the efficiency of workers (Y)
- $_{\circ}~$ Is there an association between these variables?

	Authori	tarianism	
Efficiency	Low	High	Totals
Low High	10 17	12 5	22 22
Totals	27	17	44

12-17

 An association exists if the conditional distributions of one variable change across the values of the other variable.

Efficiency by Authoritarianism, Frequencies (Percentages)

	Authoritarianism	า	
Efficiency	Low	<u>High</u>	<u>Totals</u>
Low	10 (<i>37.04%)</i>	12 (<i>70.59%)</i>	22
High	<u>17 (62.96%)</u>	<u>5 (29.41%)</u>	<u>22</u>
Totals	27 (100.00%)	17 (<i>100.00%)</i>	44

To calculate column percentages, each cell frequency is divided by the column total, then multiplied by 100:

0	(10/27)*100 = 37.04%
0	(12/17)*100 = 70.59%
0	(17/27)*100 = 62.96%
0	(5/17)*100 = 29.41%

Does an association exist?

Efficiency by Authoritarianism, Percentages

	Authoritarianism								
Efficiency	Low	<u>High</u>							
Low	37.04%	70.59%							
High	62.96%	<u> 29.41%</u>							
Totals	100.00%	100.00%							

- The column percentages show efficiency of workers by authoritarianism of supervisor.
 - The column percentages do change (differ across columns), so these variables appear to be associated.
 - NOTE: FORMAL TEST OF STATISTICAL SIGNIFICANCE IS POSSIBLE (CHI SQUARE: Last week's lecture)

Reminder: 5 step procedure: Chi square test of independence

Efficiency	Low	High	Totals
Low High	10 17	12 5	22 22
Totals	27	17	44

Authoritarianism

Performing the Chi Square Test Using the Five-Step Model

Step 1: Make Assumptions and Meet Test Requirements

- Independent random samples
- Level of measurement is nominal
- e.g. low or high on efficiency

Step 2: State the Null Hypothesis

- H_0 : The variables are independent
 - Another way to state the H_0 , more consistently with previous tests:

$$-H_0: f_0 = f_e$$

- *H*₁: The variables are dependent
 - Another way to state the H_1 :

$$-H_1: f_o \neq f_e$$

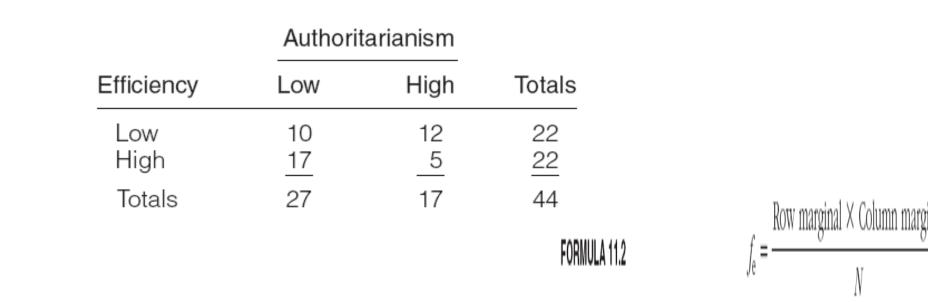
Step 3: Select Sampling Distribution and Establish the Critical Region

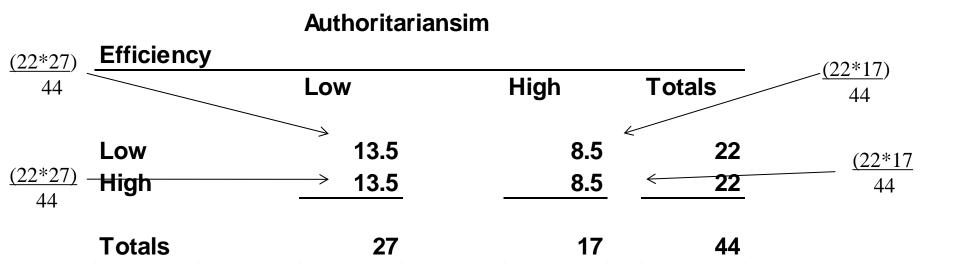
- Sampling Distribution = χ^2
- Alpha = .05
- df = (r-1)(c-1) = 1
- χ^2 (critical) = ?

Appendix C Distribution of Chi Square

Critical values at alpha =.05

											r			
df	.99	.98	.95	.90	.80	.70	.50	.30	.20	.10	.05	.02	.01	.001
1	.000	.001	.004	.016	.064	.148	.455	1.074	1.642	2.706	3.841	5.412	6.635	10.827
2	.0201	.0404	.103	.211	.446	.713	1.386	2.408	3.219	4.605	5.991	7.824	9.210	13.815
3	.115	.185	.352	.584	1.005	1.424	2.366	3.665	4.642	6.251	7.815	9.837	11.341	16.268
4	.297	.429	.711	1.064	1.649	2.195	3.357	4.878	5.989	7.779	9.488	11.668	13.277	18.465
5	.554	.752	1.145	1.610	2.343	3.000	4.351	6.064	7.289	9.236	11.070	13.388	15.086	20.517
6	.872	1.134	1.635	2.204	3.070	3.828	5.348	7.231	8.558	10.645	12.592	15.033	16.812	22.457
7	1.239	1.564	2.167	2.833	3.822	4.671	6.346	8.383	9.803	12.017	14.067	16.622	18.475	24.322
8	1.646	2.032	2.733	3.490	4.594	5.527	7.344	9.524	11.030	13.362	15.507	18.168	20.090	26.125
9	2.088	2.532	3.325	4.168	5.380	6.393	8.343	10.656	12.242	14.684	16.919	19.679	21.666	27.877
10	2.558	3.059	3.940	4.865	6.179	7.267	9.342	11.781	13.442	15.987	18.307	21.161	23.209	29.588
11	3.053	3.609	4.575	5.578	6.989	8.148	10.341	12.899	14.631	17.275	19.675	22.618	24.725	31.264
12	3.571	4.178	5.226	6.304	7.807	9.034	11.340	14.011	15.812	18.549	21.026	24.054	26.217	32.909
13	4.107	4.765	5.892	7.042	8.634	9.926	12.340	15.119	16.985	19.812	22.362	25.472	27.688	34.528
14	4.660	5.368	6.571	7.790	9.467	10.821	13.339	16.222	18.151	21.064	23.685	26.873	29.141	36.123
15	5.229	5.985	7.261	8.547	10.307	11.721	14.339	17.322	19.311	22.307	24.996	28.259	30.578	37.697
16	5.812	6.614	7.962	9.312	11.152	12.624	15.338	18.418	20.465	23.542	26.296	29.633	32.000	39.252
17	6.408	7.255	8.672	10.085	12.002	13.531	16.338	19.511	21.615	24.769	27.587	30.995	33.409	40.790
18	7.015	7.906	9.390	10.865	12.857	14.440	17.338	20.601	22.760	25.989	28.869	32.346	34.805	42.312
19	7.633	8.567	10.117	11.651	13.716	15.352	18.338	21.689	23.900	27.204	30.144	33.687	36.191	43.820
20	8.260	9.237	10.851	12.443	14.578	16.266	19.337	22.775	25.038	28.412	31.410	35.020	37.566	45.315
21 22 23 24	8.897 9.542 10.196 10.856	9.915 10.600 11.293 11.992	11.591 12.338 13.091 13.848	13.240 14.041 14.848 15.659	15.445 16.314 17.187 18.062	17.182 18.101 19.021 19.943	20.337 21.337 22.337 23.337	23.858 24.939 26.018 27.096	26.171 27.301 28.429 29.553	29.615 30.813 32.007 33.196	33.924 35.172	36.343 37.659 38.968 40.270	38.932 40.289 41.638 42.980	46.797 48.268 49.728 51.179


Step 3: Select Sampling Distribution and Establish the Critical Region


- Sampling Distribution = χ^2
- Alpha = .05
- df = (r-1)(c-1) = 1
- χ^2 (critical) = 3.841

In this case, χ^2 (critical) allows us to identify in our sampling distribution a value of χ^2 which is quite unlikely, i.e. less than a 5% chance of getting it if our null hypothesis is true

Step 4: Calculate the Test Statistic

• χ^2 (obtained) =

• A computational table helps organize the computations.

f _o	f _e	f _o - f _e	$(f_{o} - f_{e})^{2}$	$(f_{o} - f_{e})^{2} / f_{e}$
10	13.5			
17	13.5			
12	8.5			
5	8.5			
TOTAL 44	44			

 Subtract each *f*_e from each *f*_o. The total of this column *must* be zero.

f _o	f _e	f _o -f _e	$(f_{o} - f_{e})^{2}$	$(f_{o} - f_{e})^{2} / f_{e}$
10	13.5	-3.5		
17	13.5	3.5		
12	8.5	3.5		
5	8.5	-3.5		
44	44			

TOTAL

• Square each of these values

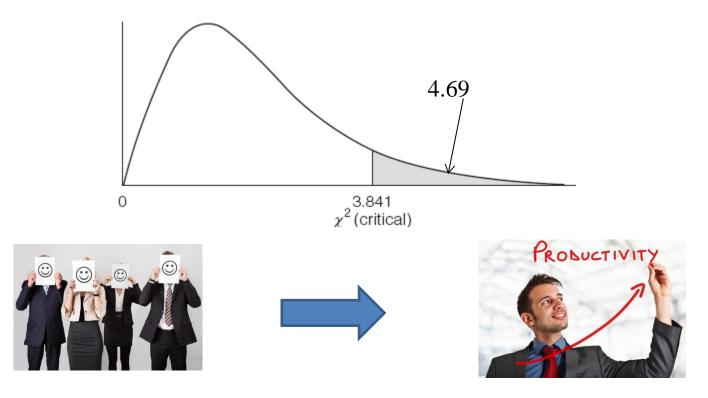
f _o	f _e	f _o - f _e	$(f_{o} - f_{e})^{2}$	$(f_{o} - f_{e})^{2} / f_{e}$
10	13.5	-3.5	12.25	
17	13.5	3.5	12.25	
12	8.5	3.5	12.25	
5	8.5	-3.5	12.25	
44	44			

TOTAL

Computation of Chi Square: An Example (continued)

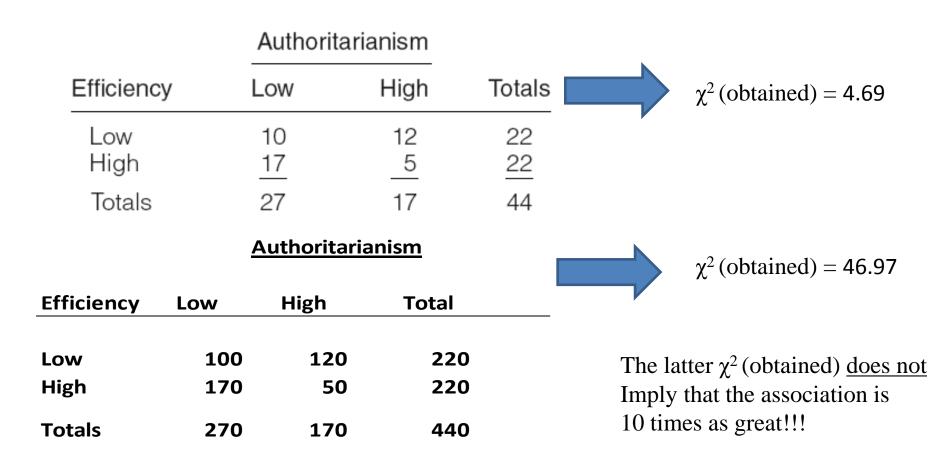
• Divide each of the squared values by the $f_{\rm e}$ for that cell. The sum of this column is chi square

f _o	f _e	f _o -f _e	(f ₀ -f _e) ²	$(f_0 - f_e)^2 / f_e$
10	13.5	-3.5	12.25	0.907407
17	13.5	3.5	12.25	0.907407
12	8.5	3.5	12.25	1.441176
5	8.5	-3.5	12.25	1.441176
44	44			4.697168


TOTAL

TEST STATISTIC -> 4.697

The larger the chi square, the more likely the association is significant


Step 5: Make Decision and Interpret Results

- χ^2 (critical) = 3.841
- χ^2 (obtained) = 4.69
- The test statistic is in the Critical (shaded) Region:
 - We reject the null hypothesis of independence.
 - Efficiency is associated with management style...

2. How Strong is the Association?

- NOTE: Chi square test of independence tells us "NOTHING" as to the strength of a relationship.. merely if there is a statistically significant association.. (yes or no)..
- The following two tables are of identical "strength".. (one has a sample which is merely 10X as large as the other's) -> would have identical column %'s

2. How Strong is the Association?

- Previous example: identical % conditional distributions (column percentages), i.e. identical strength of association (the 2nd is merely with a larger sample and subsequently with a larger chi square)
- Differences in the strength of relationships are implied greater differences in percentages across columns (or conditional distributions).
 - In weak relationships, there is little or no change in column percentages.
 - In strong relationships, there is marked change in column percentages.

• One way to measure strength is to find the "maximum difference," the biggest difference in column percentages for any row of the table.

Note, the "maximum difference" method provides an easy way of characterizing the strength of relationships, but it is also limited.

Efficiency by Authoritarianism, Percentages

	Authorita	rianism
Efficiency	Low	<u>High</u>
Low	37.04%	70.59%
High	<u>62.96%</u>	<u> 29.41%</u>
Totals	100.00%	100.00%

The "Maximum Difference" is: – 70.59–37.04=33.55 percentage points. The scale presented Table 11.5 can be used to describe (only arbitrary and approximately) the strength of the relationship"

TABLE 12.5THE RELATIONSHIP BETWEEN THE MAXIMUM DIFFERENCEAND THE STRENGTH OF THE RELATIONSHIP

Maximum Difference	Strength
<i>If the maximum difference is:</i>	<i>The strength of the relationship is:</i>
between 0 and 10 percentage points	weak
between 11 and 30 percentage points	moderate
more than 30 percentage points	strong

Efficiency by Authoritarianism, Percentages

	Authorita	arianism
Efficiency	Low	<u>High</u>
Low	37.04%	70.59%
High	<u>62.96%</u>	<u> 29.41%</u>
Totals	100.00%	100.00%

- The "Maximum Difference" is:
 - 70.59-37.04=33.55 percentage points.
 - Suggests is a strong relationship.

What if?

	Authorita	arianism
Efficiency	Low	<u>High</u>
Low	37.04%	40.59%
High	62.96%	<u> 59.41%</u>
Totals	100.00%	100.00%

- The "Maximum Difference" is:
 - 62.59 59.04= 3.55 percentage points.
 - Suggests is a weak relationship.

NOTE: OTHER POSSIBILITIES ->

MEASURES OF ASSOCIATION ARE POSSIBLE that indicate "STRENGTH"!!

(will return to this point later)

"Repeatedly concussed National Football League players," said the UNC report, "had five times the rate of mild cognitive impairment (pre-Alzheimer's) than the average population," while "retired NFL players suffer from Alzheimer's disease at a 37-per-cent higher rate than average." Then came the kicker. Two doctors determined "that the average life expectancy for all pro football players, including all positions and backgrounds, is 55. Several insurance carriers say it is 51 years."

NFL Linemen 1 in 5 will develop Alzheimer's in their lifetime..Other men 1 in 9 develop Alzheimer's..

	Ex NFL Linemen			ericans
Develops Alzheimer's	200	20.00%	111	11.10%
Does no develop Alzheimer's	800	80.00%	889	88.90%
Total Sample	1000		1000	

Do a chi square test (on your own time): Yes, it is significant!!

The Maximum Difference is: 88.90 – 80.00 -> 8.90.. So we'll consider this a relatively weak association..

- As mentioned earlier:
- Bivariate association can be investigated by finding answers to three questions:
 - 1. Does an association exist?
 - 2. How strong is the association?
 - 3. What is the pattern or direction of the association?

With regard to pattern??

Which scores of the variables tend to go together??

3. What is the Pattern of the Relationship?

- "Pattern" = which scores of the variables go together?
- Previous example:

	Authoritaria	nism
Efficiency	Low	<u>High</u>
Low	37.04%	70.59%
High	<u>62.96%</u>	<u> 29.41%</u>
	100.00%	100.00%

Question:

If someone scored "low" on authoritarianism: what would you predict on "efficiency"?

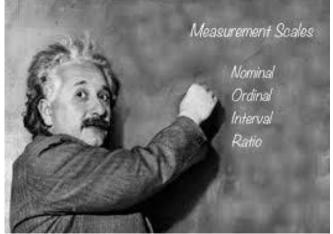
"High" (62.96% of cases)

"Low" on "Authoritarianism" tends to go with "High" on efficiency (62.96%)

If someone scored "high" on authoritarianism: what's your prediction? "Low" (70.59% of cases)

High "Authoritarianism" tends to go with "Low" in efficiency (70.59%)

What is the Direction of the Relationship?


- If *both* variables are ordinal, we can discuss *direction* as well as *pattern*.
- In *positive* relationships, the variables vary in the same direction.
 - Low on X is associated with low on Y.
 - High on X is associated with high on Y.
 - As X increase, Y increases.
- In *negative* (inverse) relationships, the variables vary in opposite directions.
 - As one increases, the other decreases.

- Education and Income?
- Positive: As education goes up, we expect income to be higher (and vise versa)
- Hostile Parenting and Child Well-being
- Negative: Higher levels of hostile parenting is associated with "lower" levels of child wellbeing (and vise versa)
- Education of parents and academic success of children
- Positive: Better educated parents have more successful children (and vise versa)
- Number of hours work/weekly and time devoted to leisure activities/weekly
- Inverse: as hours of work increase, hours devoted to leisure decline (and vise versa)
- What about:
- "Religious affiliation and education"?
- If one or more variables is nominal., we can not speak of "direction"

Continuing with Chapter 11:

- Measures of association for nominal variables
 - -> how strong is the relationship?
- (moving beyond comparing "column percentages")
- It is also useful to have a summary measure
- a single number to indicate the strength of the relationship.
- For nominal level variables, there are two commonly used types of measures of association:
 - Phi (φ) or Cramer's V (Chi square-based measures)
 - Lambda (λ) (<u>PRE measure</u>)

Recall: Nominal variable? You can merely classify cases, can't rank order them.. Examples: Religious affiliation Country of Birth Smoker/non-smoker,... etc..

Chi Square-Based Measures of Association

- Phi is used for 2x2 tables.
- Formula for phi:

$$\phi = \sqrt{\frac{\chi^2}{N}}$$

where the obtained chi square, χ^2 , is divided by N, then the square root of the result taken.

Chi Square-Based Measures of Association (continued)

Cramer's V is used for tables larger than 2x2.
Formula for Cramer's V:

$$V = \sqrt{\frac{\chi^2}{(N)(\min r - 1, c - 1)}}$$

where (min r - 1, c - 1) = the minimum value of r - 1 (number of rows minus 1) or c - 1 (number of columns minus 1)

Chi Square-Based Measures of Association

- Phi and Cramer's V range in value from 0 (no association) to 1.00 (perfect association).
- •Nothing on the "direction" of the relationship (why? Nominal)
- Phi and V are symmetrical measures; that is, the value of Phi and V will be the same regardless of which variable is taken as independent.
- General guidelines for interpreting the value of Phi and V are provided in Table 11.12

THE RELATIONSHIP BETWEEN THE VALUE OF NOMINAL-LEVEL MEASURES OF ASSOCIATION AND THE STRENGTH OF THE RELATIONSHIP

Value	Strength
<i>If the value is</i>	<i>The strength of the relationship is</i>
between 0.00 and 0.10	weak
between 0.11 and 0.30	moderate
greater than 0.30	strong

Chi Square-Based Measures of Association: An Example

The following problem is selected from Chapter 10 which was used to introduce the "chi square test" (pages 274-278)

Social Workers: Mobilizing Strengths in Individuals & Communities

A random sample of 100 social work graduates were classified in terms of whether the Canadian Association of Schools of Social Work (CASSW) accredited their undergraduate programs (independent variable) and whether they were hired in social work positions within three months of graduation (dependent variable).

Accreditation Status

	Accredited	Not Accredited	Totals	
Employment Status				
Working as social worker	30	10	40	χ^2 (obtained) = 10.78
Not working as social worker	25	35_	60	χ (obtained) = 10.70
Totals	55	45	100	

Example:

- We saw in Chapter 10 that this relationship was statistically significant:
- Chi square = 10.78, which was significant at the .05 level
- <u>However</u>, what about the strength of this association?
 - •To assess the strength of the association between CASSW accreditation and employment, phi is compute as:

$$\phi = \sqrt{\frac{\chi^2}{N}}$$
$$\phi = \sqrt{\frac{10.78}{100}}$$
$$\phi = 0.33$$

0

A phi of .33 indicates what?
 Previous table,.. a strong relationship.., right?

Limitations of Chi Square-Based Measures of Association

- Phi is used for 2x2 tables only.
 - For larger tables, the maximum value of phi depends on table size and can exceed 1.0.
 - Use Cramer's V for larger tables.
 - Example: page 312 in text book

		Club Member	ship		χ^2 (obtained) = 31.50
Academic	Varisity	Non-sports	Νο		
Achievement		Club	Membership	Totals	v^2
Low	4	4	17	25	$V = \sqrt{\frac{\lambda}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$
Moderate	15	6	4	25	$V = V(N)(\min r - 1, c - 1)$
High	4	16	5	25	
Totals	23	26	26	75	31.50

Strong relationship between the two variables!!

- Phi (and Cramer'sV) are indices of the *strength* of the relationship *only*. They do ۲ not identify the pattern.
- With nominal: •
- To analyze the pattern of the relationship, see the column percentages in the ۲ bivariate table. Academic Achievement by Student Club Memebership

	Academic	Varisity	Non-sports	Νο	
Previous example	Achievement		Club	Membership	Totals
	Low	4	4	17	25
	Moderate	15	6	4	25
	High	4	16	5	25
%	Totals	23	26	26	75
%	Totals	23	26	26	75

Academic Achievement by Student Club Memebership

		Club Member	ship	
Academic	Varisity	Non-sports	Νο	
Achievement		Club	Membership	Totals
Low	17.39%	15.38%	65.38%	33.33%
Moderate	65.22%	23.08%	15.38%	33.33%
High	17.39%	61.54%	19.23%	33.33%
Totals	100.00%	100.00%	100.00%	100.00%

Lambda

- Lambda (λ) is a measure of association based on bivariate tables
- Like Phi (and V), Lambda (λ) is used to measure the strength of the relationship between nominal variables in bivariate tables.
- Like Phi (and V), the value of lambda ranges from 0.00 to 1.00.
- Unlike Phi (and V), Lambda has a more direct interpretation.
 - While Phi (and V) is only an index of strength, the value of Lambda tells us the improvement in predicting Y while taking X into account (PRE measure of association)

What is meant by Proportional Reduction in Error (PRE) Measure (of association)?

- Logic of PRE measures is based on two predictions:
 - First prediction: Ignore information about the independent variable, predict the score on the dependent variable, and inevitably make many errors (*E*₁)
 - **2.** Second prediction: Take into account information about the independent variable and on this basis, predict the value of the dependent. If the variables are associated we should make fewer errors (E_2) .

Example: Assume you only had the following information on 50 Kings Students

50 Kings Students:	Frequency
Live on residence	10
Live off Campus (with roommate)	10
Live off Campus (with family)	30

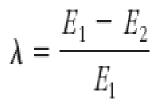
The same 50 students are about to enter the room: You only have the above information.

You had to predict the living arrangements for each student.

What would be your best guess? Our best guess is "live off campus" with family.. We would be correct 30 times and wrong 20 times? $E_1 = 20$ What if you were given additional information on 50 Kings Students, i.e. Conditional distributions by year at Kings (1st, 2nd or 3rd)

50 Kings Students:	1st	2nd	3rd	
Live on residence		10	0	0
Live off Campus (with roommate)		0	2	8
Live off Campus (with family)		20	6	4

The same 50 students are about to enter the room. You are told:

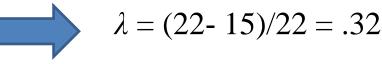

the first 30 are in Year 1. What would you predict?-> "living off campus with family" (wrong 10 times, right 20)

the next 8 are second year? What would you predict?
-> "living off campus with family" (wrong 2 times, correct 6 times)

the next 12 are in 3rd year? What would you predict? Living off campus with roommate (wrong 4 times, correct 8)

Add the three together, we will be wrong 16 times, right? This is better than how we did initially: we were wrong initially 20 times, right? There is reduction in error when using information from another variable.. • Formula for Lambda:

FORMULA 13.3


Working with a bivariate table $E_1 = N - \text{largest row total}$ $E_2 = \text{For each column, subtract the largest cell}$ frequency from the col. total

Example (previous table)

	Authorn			
Efficiency	Low	High	Totals	
Low High	10 17	12 5	22 22	
Totals	27	17	44	

Authoritoriopicm

$$E_1 = 44 - 22 = 22$$

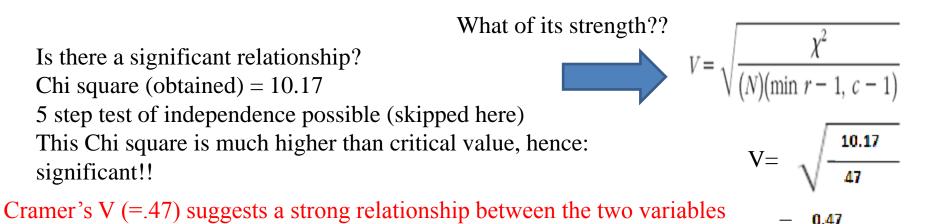
 $E_2 = (27 - 17) + (17 - 12) = 15$

Lambda: An Example (continued)

- A lambda of .32 means that authoritarianism (X) increases our ability to predict efficiency (Y) by 32%.
- According to the guidelines suggested in Table 11.12, a lambda of 0.32 indicates a strong relationship.

The Limitations of Lambda

- 1. Lambda is asymmetric: Value will vary depending on which variable is independent. Need care in designating independent variable.
- 2. When row totals are very unequal, lambda can be zero even when there is an association between the variables. For very unequal row marginals, better to use a chi-square based measure of association.
- 3. Lambda gives an indication of the *strength* of the relationship *only*.
- It does *not* give information about pattern.
- To analyze the pattern of the relationship, use the column percentages in the bivariate table.


One more example:

Is there a relationship between the status of women and the geographic region of a given country?

Logical dependent variable?

-> "status of women"...

Status of Women by Region						
Women's Status	Africa	Latin Amer	Europe	Totals		
Low	13	8	4	25		
High	3	7	12	22		
Totals	16	15	16	47		

We can also calculate Lambda in this context...

Status of Women by Region						
Women's Status	Africa	Latin Amer	Europe e	Totals		
Low	13	8	4	25		
High	3	7	12	22		
Totals	16	15	16	47		

 $E_1 = 47 - 25 = 22$

$$\lambda = \frac{E_1 - E_2}{E_1}$$

Where:

 $E_1 = N - \text{largest row total}$

 E_2 = For each column, subtract the

largest cell frequency from the col total & then add them up..

$$E_2 = (16 - 13) + (15 - 8) + (16 - 12) = 14$$

Lambda: 36% fewer errors of prediction using $\lambda = (22 - 14)/22 = .36$ information from independent variable

Again: THIS IMPLIES A RELATIVELY STRONG RELATIONSHIP!!

Summary..

In this example:

Chi square tells us that it is significant!! i.e. association is not merely the by-product of sampling error

Cramer's V and Lambda both suggest a relatively strong relationship..

But what of the character of the relationship??

Status of Women by Region						
Women's Status	Africa	Latin Amer	Europe	Totals		
Low High	13 3	8 7	4 12	25		
Totals	16	15	16	47		

Calculate Column Percentages:

Status of Women by Level of Development for 47 Nations

Women's Status	Africa	Lati	n Ame	er Eu	irope		Totals	Here we see the
Low High	13 3	81.25% 18.75%	8 7	53.33% 46.67%	4 12	25.00% 75.00%		Status of women is Highest in Europe,
Totals	16	100.00%	15	100.00%	16	100.00%	47	