

$$\sigma = ((1-p)/(p^2))^{1/2} = \left(\frac{1-p}{p^2}\right)^{1/2}$$

- 1. Course Logistics
- 2. Guest: Professor D. Maynard (Stats Tutorial)
- 3. Prologue: A Basic mathematical review

4. Chapter 1:

The role of statistics in the research process Statistical applications Types of variables

Instructor

- Prof. Don Kerr
- Office: Labatt Hall Building: LH 208
- Office Hours:

Mondays (2:30-3:30 p.m.)

• Please note this hour is drop-in – no need to make an appointment ...

Instructor

- Phone: 519-433-3491
 - not at all a good method of communication
- E-mail: dkerr@uwo.ca
 - Use this to contact me for any 'official' reason
 - Ex. You are about to miss a test due to illness
 - to make an appointment to see me if you can't drop into my listed hours
 - For extremely short questions
 - Otherwise just drop in

Required Readings

- The following text is a required resource for this course.
- Healey/Prus/Lieflander. Statistics: A Tool for Social Research, 4th Canadian edition

MY COURSE WEBSITE (I don't use OWL very much):

• Includes:

- Professor/class info
- Course outline
- Lectures
- Assignments
- Grades
- Extra documents you need like appendices and formula sheets
- http://dkerr.kingsfaculty.ca/

Other bits

Monday 11:30 am class ... please watch lateness ...

- Copying other students on assignments, cheating on tests etc.
 - Obviously don't do these things
 - See course outline
- Electronics use
 - No hand-held devices in the classroom please
 - Laptop use should be appropriate (no social media, videogames etc.)
 - Do not video/audio record this class or your fellow students without direct consent

• MY SUGGESTION: PRINT UP THE COURSE LECTURE AHEAD OF TIME EACH WEEK, AND BRING IT TO CLASS (FOR NOTE TAKING) Course Requirement:

Problem solving assignments (50% of course grade)

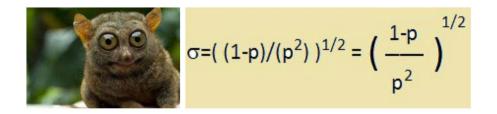
#1 Sept 30th #2 Oct 14th #3 Oct 21st #4 Nov 18th #5 Dec 2nd

Late assignments (5% daily, not including Saturdays & Sundays)

Midterm exam (25% of course grade) – Oct 28th

Final exam (25% of course grade) – Final examination period

Note: King's Academic Policy

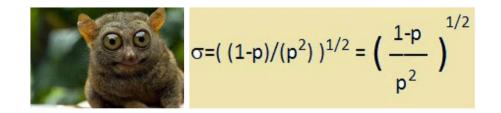

If you require any form of accommodation for a test and/or assignment (e.g. due to a sickness or similar event), please let me know, as soon as possible (ASAP).

If you make a "formal request" to the university -you must be in touch with me ASAP (via email: dkerr@uwo.ca)

- AVAILABLE THIS YEAR:
- Sociology Statistics Review/Help sessions for students registered in SOC2205
- NOTE: Completely optional; non-mandatory starting next week, i.e. the 2nd week of the term
- TIME (To be announced)
- Hour of tutoring with Statistics professor: Prof. Donna Maynard
- Weekly review of course material and 'questions of the week'.
- THIS is where you can get help with your assignments!!!

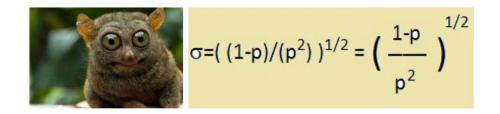
Chapters 1 & 2: In this presentation you will learn about:

- Prologue: A Basic mathematical review
- A word on rounding variables
- CHAPTER 1:
- The role of statistics in the research process
- Statistical applications
- Types of variables


1. Multiplication

All of the below imply the exact same thing (MULTIPLICATION):

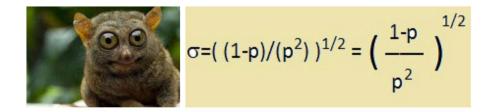
a * b	
a X b	
ab	10 X 5 = 50
a.b	
(a)b	
a(b)	
(a)(b)	


2. Division All of the below imply the exact same thing (DIVISION)

a/b a ÷ b
$$\frac{a}{b}$$

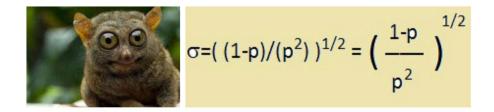
3. Squares and square root:

 $\chi^2 = (X)(X)$ Eg. If X is 4, then $4^2 = (4)(4) = 16$ \sqrt{X} square root of XEg. If X is 4, then $\sqrt{4} = 2$ Note:
 $X^{1/2}$ is another way
of denoting the
square root of X



3. Squares and square root:

 $X^2 = (X)(X)$ Eg. If X is 4, then $4^2 = (4)(4) = 16$ \sqrt{X} square root of XEg. If X is 4, then $\sqrt{4} = 2$ Note:
 $X^{1/2}$ is another way
of denoting the
square root of X4. Summation: $\sum X_i$


Assume we had 5 cases, with values 21, 20, 19, 18, 18

$$\sum X_i = 21 + 20 + 19 + 18 + 18$$

Summation continued, with 5 cases with the values 21, 20, 19, 18, 18

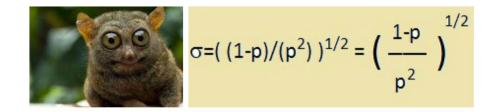
$$\sum X_{i}^{2} = 21^{2} + 20^{2} + 19^{2} + 18^{2} + 18^{2}$$
$$= 441 + 400 + 361 + 324 + 324 = 1850$$

Summation continued, with 5 cases with the values 21, 20, 19, 18, 18

$$\sum X_{i}^{2} = 21^{2} + 20^{2} + 19^{2} + 18^{2} + 18^{2}$$
$$= 441 + 400 + 361 + 324 + 324 = 1850$$

Note: this is different from the below:

$$\left(\sum X_i\right)^2 = (21 + 20 + 19 + 18 + 18)^2 = 96^2 = 9216$$


 $\sum X_i$ Add up each value/score

 $\sum X^{2}_{i}$

 $\left(\sum X_i\right)^2$

Square each value/score and then add them up

Add up each value/score and then square them up..

$$5 + (-2) = 5 - 2 = 3$$

$$5 - (-2) = 5 + 2 = 7$$

$$(3)(-3) = -9$$

$$(-3)(3) = -9$$

$$(-3)(-3) = +9$$

$$(9)/(-3) = -3$$

$$(-9)/(3) = -3$$

$$(-9)/(-3) = 3$$

Order of operations: the rules of which calculation comes first in an expression.

They are:

Do everything inside parentheses first: ()
Exponents
then do multiplies and divides
lastly do the adds and subtracts

 $2 + 5 \times 3 =$ 2 + 15 = 17.... NOT: 7 X 3 !!!!! $(8 + 2) \times 4 + 1 =$ $(10) \times 4 + 1 =$ 40 + 1 = 41 NOT (10) X 5 !!!!

How we handle parentheses matters!

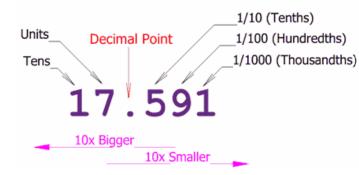
$$(8 + 2) - 4(3)^2 / (8 - 6) = ?$$

(10) - 4(3)² / (2) =
10 - 4(9) / 2 =
10 - 36/2 =
10 - 18 = -8

Example with the same equation but with no parentheses

$$8 + 2 - 4 \times 3^2 / 8 - 6 = ?$$

 $8 + 2 - 4 \times 9 / 8 - 6 =$
 $8 + 2 - 36 / 8 - 6 =$
 $10 - 4.5 - 6 = 0.5$



A word on "rounding"

If possible, do all your calculations without rounding...

In providing your final answer on any question: ROUND TO THE SECOND DECIMAL POINT

17.59122 is rounded to 17.59 17.238111 is rounded to 17.24

Always round 5 upward in the context of this class. 15.52511 -> 15.53

If for practical purposes, you must round (time constraints? Many steps in a calculation, round to the "fourth decimal point")

5.3939211 -> 5.3939

8.339555 -> 8. 3396 Why, because the fifth figure past the decimal point is 5 (i.e. round previous figure up)...

The Role of Statistics

Statistics are mathematical tools used to organize, summarize, and manipulate *data*.

What are **data**?

information expressed as numbers (quantitatively). scores (or values) on "*variables*"

EXAMPLE OF DATA

wrkstat	marital	agewed	sibs	childs	age	birthmo	zodiac	educ	degree
1	3	20	3	1	43	5	2	11	1
1	5	0	2	0	44	8	6	16	3
1	3	25	2	0	43	2	11	16	3
2	5	0	4	0	45	99	99	15	1
5	5	0	1	0	78	10	7	17	4
5	1	25	2	2	83	3	12	11	1
1	1	22	2	2	55	10	7	12	1
5	1	24	3	2	75	11	9	12	1
1	3	22	1	2	31	7	4	18	4
2	5	0	1	0	54	3	12	18	4
1	5	0	1	0	29	4	2	18	4
1	5	0	0	0	23	10	8	15	1
1	1	31	0	1	61	99	99	12	1
5	4	24	3	4	63	3	1	4	0
4	5	0	4	3	33	3	12	10	0
1	5	0	0	1	36	11	8	14	1
7	5	0	0R	4	30	3	12	8	0

One would need documentation to figure out what this data means? What are the variables, cases, etc. ?

The Role of Statistics

What are "variables"?

traits that can change values from *case* to case (e.g., age, gender, social class).

What are "cases"?

Cases are the entities from which data are gathered (e.g., people, groups, provinces, countries).

EXAMPLE OF DATA

Several variables

						•				
	wrkstat	marital	agewed	sibs	childs	age	birthmo	zodiac	educ	degree
	1	3	20	3	1	43	5	2	11	1
	1	5	0	2	0	44	8	6	16	3
7	1	3	25	2	0	43	2	11	16	3
	2	5	0	4	0	45	99	99	15	1
	5	5	0	1	0	78	10	7	17	4
Cases	> 5	1	25	2	2	83	3	12	11	1
	1	1	22	2	2	55	10	7	12	1
	5	1	24	3	2	75	11	9	12	1
	1	3	22	1	2	31	7	4	18	4
	2	5	0	1	0	54	3	12	18	4
	1	5	0	1	0	29	4	2	18	4
	1	5	0	0	0	23	10	8	15	1
	1	1	31	0	1	61	99	99	12	1
	5	4	24	3	4	63	3	1	4	0
	4	5	0	4	3	33	3	12	10	0
	1	5	0	0	1	36	11	8	14	1
	7	5	0	QR	4	30	3	12	8	0

- A <u>new study by the Centre for Addiction and Mental Health</u> (CAMH), found Canadians drink more than alcohol than the global average. On average, Canadians consume 8.2 litres of pure alcohol a person aged 15 and over
 - What is the <u>variable</u>?
 What are the <u>cases</u>?
 What is the statistic used?

Shutt

Variable is <u>amount of alcohol consumed</u>. Cases are the <u>Canadians sampled</u>. Statistic is the <u>average</u> - average amount of alcohol consumed

(Note: that amounts to 480 bottles of beer, 91 bottles of wine or 27 bottles of spirits, the Center reports).

- In a recent survey of university students, Statistics Canada found that the average age of university students in Canada was 21.7 years. Identify the following:
 - 1. What is the <u>variable</u>?
 - 2.What are the <u>cases</u>?
 - 3. What is the statistic used?

Oldest and youngest university grads

94 years old 10 years old

Variable is <u>age</u>. Cases are the <u>university students</u>. Statistic is the <u>average</u> - average age of university students in Canada

Statistical Applications

- Two main statistical applications:
 - Descriptive statistics
 - Inferential statistics (sample based)

Descriptive Statistics

- Summarize one variable (univariate).
- Summarize the relationship between two variables (bivariate).
- Summarize the relationship between three or more variables (multivariate).

- Univariate descriptive statistics include:
 - Percentages, averages, and various charts and graphs.
 - Example: Canadians have on average 1.6 children
- *Bivariate* descriptive statistics describe the strength and direction of the relationship between two variables.
 - Example: University educated Canadians are more likely than others to have university educated parents.
- *Multivariate* descriptive statistics describe the relationships between three or more variables.
 - Example: Income tends to increase with education more so for native born Canadians then is true of Canadians born abroad.

Inferential Statistics

- Generalize, or infer, from a sample to a population.
 - •Population includes **all** cases in which the research is interested.
 - •Samples include carefully chosen **subsets** of the population.

Inferential Statistics (continued)

- Voter surveys are a common application of inferential statistics.
 - A thousand or so carefully selected voters are interviewed about their voting intentions.
 - This information is used to estimate the intentions of **all** voters (millions of people).
 - Example: The Green Party of Canada will receive about 10% of the vote.

Types of Variables

- There are many schemes used to classify variables including:
 - 1. Independent or dependent variables
 - 2. Discrete or continuous variables
 - 3. Nominal, ordinal, or interval-ratio variables (or levels of measurement)

Independent or Dependent Variables

• In causal relationships:

CAUSE \rightarrow EFFECT independent variable \rightarrow dependent variable

Which variable is the dependent? Smoking behavior, lung cancer Weekly exercise (in hours), pulse rate (resting) Longevity, SES,

Discrete or Continuous Variables

- **Discrete** variables are measured in units that cannot be subdivided.
 - Example: Nationality (Canadian; Polish; Irish, Syrian, etc.)
- **Continuous** variables are measured in a unit that can be subdivided to a very refined degree...
 - Example: Age

What about the following? Religious affiliation? Income?

Nominal, Ordinal, or Interval-Ratio Level of Measurement

- The mathematical quality of the scores of a variable is measured on three different levels, called levels of measurement:
 - Nominal Scores are **labels** only, they can not be treated like numbers in the normal sense.
 - Ordinal Scores have some numerical quality and can be ranked.
 - Interval-ratio Scores are **numbers**.

Nominal Level Variables

- Scores are different from each other but cannot be treated as numbers.
 - Examples:
 - Gender
 - 1 = Female, 2 = Male
 - Immigrant Status
 - 1 = Canadian-born, 2 = Foreign-born

Ordinal Level Variables

- Scores can be ranked from high to low or from more to less.
 - Survey items that measure opinions and attitudes are typically ordinal.
 - If you can distinguish between the scores of the variable using terms such as "more, less, higher, or lower" the variable is ordinal.
 - Example: Students at a university were asked "Do you (1) strongly agree, (2) agree, (3) disagree or (4) strongly disagree that smoking should be banned on campus?"
 (A student that strongly agreed would be *more* in favour to ban smoking on campus than a student who merely "agreed" or "strongly disagreed").

Interval-Ratio Level Variables

- Scores are actual numbers and have a true zero point and equal intervals between scores.
- Examples:
 - Age (in years)
 - Income (in dollars)
 - Number of children
 - A true zero point (0 = no children)
 - Equal intervals: each child adds one unit

• Different statistics require different mathematical operations (ranking, addition, square root, etc.), so the level of measurement of a variable tells us which statistics are permissible and appropriate.

wrkstat	marital	sibs	childs	age	zodiac	educ	degree
1	3	3	1	43	2	11	1
1	5	2	0	44	6	16	3
1	3	2	0	43	11	16	3
2	5	4	0	45	99	15	1
5	5	1	0	78	7	17	4
5	1	2	2	83	12	11	1
1	1	2	2	55	7	12	1
5	1	3	2	75	9	12	1
1	3	1	2	31	4	18	4
2	5	1	0	54	12	18	4
1	5	1	0	29	2	18	4
1	5	0	0	23	8	15	1
1	1	0	1	61	99	12	1
5	4	3	4	63	1	4	0
4	5	4	3	33	12	10	0
1	5	0	1	36	8	14	1

What's the level of measurement?

ı.

Wrkstat

- 1- full time
- 2- part time
- 3- unemployed
- 4- dropped out the labour force
- 5. Not applicable (too young/retired, etc)

marital

- 1- married
- 2- cohabiting
- 3- divorced
- 4- same sex married
- 5. Never married

Sibs – number of siblings Childs – number of children Age – current age

Zodiac

- 1- Aries 2- Cancer
- 3-Sagittarius
- 4., etc.

Educ

- Years of education

Degree

- 1- Hs or less
- 2. College
- 3. University
- 4. Graduate/professional degree